

CORROSION INHIBITORS FOR CONCRETE CORROSION -AN OVERVIEW

M. Pandiarajan^{[a]*}, S. Rajendran^{[a],[b]*}, J. Sathiyabama^[a], J. Lydia Christy^[c], J. Jeyasundari^[d], P. Prabhakar^[e]

Keywords: corrosion inhibitors, concrete.

Reinforced concrete is widely used for building materials and plays a significant role in economic development. However, the premature degradation of reinforced concrete structures due to the reinforcing steel corrosion has become a serious problem in modern society, which results in a huge economic loss. Under normal conditions, reinforcing steel in concrete can be protected from corrosion by forming a compact passive film on its surface in concrete pore solution with high alkalinity (pH 12.5-13.5). However, the passive film can be locally damaged and the localized corrosion of reinforcing steel takes place when pH and/or the chloride concentration at the steel/concrete interface reach the critical values for corrosion. Corrosion behaviour of metals and alloys in concrete solution has been investigated in presence and absence of inorganic and organic inhibitors. Usually carbon steel and steel rebars have been used. Sometimes galvanized steel and SS316L have been used. Organic inhibitors, inorganic inhibitors, and natural products have been used as inhibitors along with concrete admixture. Corrosion resistance of metals has been evaluated by weight loss method, electrochemical studies such as polarization study and AC impedance spectra. Galvanostatic pulse technique has also been employed. The protective film formed on the metal surface have been analyzed by SEM, FTIR spectroscopy, XPS, AFM and EDAX. The protective film consists of metal-inhibitor complex, calcium carbonate and calcium hydroxide. Experiments have been carried out at room temperature. Corrosion inhibitors fill up the pores and prevent the penetration chloride ion towards the metal surface. Passive films formed on the metal surface also increase the life time of concrete rebars.

* Corresponding Authors

- [a] Corrosion Research Centre, PG and Research Department of Chemistry, G.T.N Arts College, Dindigul- 624 005, India. E-mail: pandiarajan777@gmail.com
- [b] Corrosion Research Centre, R.V.S. School of Engineering and Technology, Dindigul- 624 005, India. E-mail: srmjoany@sify.com
- [c] Department of Chemistry, VSB Engineering College, Karur-639 111, India.
- [d] PG Department of Chemistry, SVN College, Madurai, India.
- [e] PG and Research Department of Chemistry, APA College of Arts and Culture, Palani, Dindigul, India.

Introduction

Corrosion behaviour of metals and alloys in concrete solution has been widely studied¹⁻⁶⁵. In the past, most of the design studies in the literature and research in reinforced concrete assumed that the durability of reinforced concrete structures could be taken for granted. However, many reinforced concrete structures are exposed during their lifetimes to environmental stress (for example, corrosion and expansive aggregate reactions) which attacks the concrete or steel reinforcement⁶⁶. Researchers and engineers are continuously in search of cost-effective means to prevent the corrosion of reinforcing steel for the duration of a concrete structure's design life. The cement paste in concrete is alkaline with a pH typically between 12 and 14. This paste forms a passive film surrounding reinforcing steel in concrete which further thicken iron oxide layer on the steel surface. Many researchers believe this alkaline environment facilitates the protective passive film around the steel^{67,68}. The passive film is not invulnerable, though it can be damaged both chemically and mechanically. Some examples of chemical damage are carbonation, chloride ingress (seawater, de-icing salt, unwashed sea sand, admixtures etc) and sulphate attack. Proper design and preparation of concrete in accordance with relevant standards and timely maintenance of the structures under those conditions would guarantee them a long and efficient life in aggressive media. However, these requirements are not always met and adhered to. Preventive measures being used in the construction industry to salvage the service life of steel reinforcement in concrete structures are cathodic protection, inhibitors, coatings, penetrating sealers and chloride removal⁶⁹. One of the practiced methods popularly used for the control of steel corrosion in concrete is the corrosion inhibitors either preventive or curative.

In recent years, the use of these inhibitors in producing high performance concrete has increased significantly. Inhibitors are chemical substance that decreases the corrosion rate when present in the corrosion system at suitable concentration without significantly changing the concentration of any other corrosion agent⁷⁰. Many synthetic compounds (inhibitors) were developed to combats this endemic corrosion problem, but most of them are highly toxic to both human beings and environment⁷¹. Inhibitors toxicity according to ref. [72] is measured as lethal dose (LD) and lethal concentration (LC). LD₅₀ is the lethal dose of a chemical at which 50% of a group of animals are killed for 24 h exposure time, whilst LC_{50} is lethal concentration in air or water which kills 50% of test population. Inhibitor biodegradation or biological oxygen demand (BOD) should at least be 60%. The BOD is a measure of how long the inhibitor will persist in the environment. Hence it becomes imperative to review the current inhibitors in order to find more appropriate, suitable and sustainable inhibitor.

Metals

Corrosion resistance of various metals in concrete solution has been investigated. Corrosion resistance of various metals such as $Fe^{3,4,5,6,7,8,10,11,12,13,17}$, carbon steel^{9,54,62}, mild steel^{1,15,16,18,20,24,25,29,30,31}, stainless steel^{19,40,44,65} and galvanized steel^{14,19,22,50,57} has been investigated.

Inhibitors

Among various inhibitors which have been used along with concrete admixtures, mention may be made of trisodium citrate², phosphate, nitrite³⁷, sodium gluganate⁴, calcium nitrate, calcium nitrite⁵, sodium molybdate⁶, di-2 ethylhexyl sebacate¹¹, and uracil derivatives¹³. Organic inhibitors^{2,4,8,9,11,12,13,48,61} have been used to control the corrosion of various metals and its alloy in various medium.

Medium

The inhibition efficiency of various inhibitor is controlling corrosion of metals and its alloys in SCPS medium 1,2,3,7,8,9,10,11,12,13,14 , concrete medium 5,15,16,17,19,20,21,22,23,25 and alkaline medium 3,6,30,34,36,38 have been investigated.

Methods

Various methods have been used to evaluate the inhibition efficiency of corrosion inhibitors. Usually weight loss method^{1,2,15,30,39,47,52,53,60}, Electrochemical studies (polarization and AC impedance)^{3,4,5,6,7,8,9,,12,13,14,15,18} and Galvanostatic pulse technique³⁴, and Gravimetric measurement⁴⁶ studies have been employed.

Surface analysis

The protective film formed on the metal surface, during the process of corrosion protection of various metals by inhibitors have been analyzed by various surface analysis technique such as SEM^{3,10,14,62,64}, FTIR^{3,13,51}, XPS^{13,33}, AFM⁶⁴, and EDAX^{14,29}. In general it has been observed that the protective film consists of the metal-inhibitor complex along with CaCO₃ and Ca(OH)₂.

Temperature

The inhibition efficiency of various inhibitors has been evaluated at room temperature²⁹.

Mechanism of enhanced corrosion resistance

It is observed that when inhibitors are used along with simulated concrete pore solution, the corrosion resistances of metals increase. In general, it is due to adsorption of these inhibitors on the metal surface and forming metal-inhibitor complex. It is also due to strengthening of $CaCO_3$ and $Ca(OH)_2$ deposits on the metal surface. The inhibitors may fill up the pores in the concrete structures, which are formed in the absence of inhibitors⁵⁹. The inhibitors may further prevent the penetration of corrosive ions such as chlorides and sulphate towards the metal surface⁵⁹. Organic inhibitors

are specially used for this purpose. The inhibitors may be hydrophobic in nature⁵⁷ and prevent the water molecules reaching the metal surface. However after long time exposure (two years) the chloride ions break the protective film formed on the metal surface, in presence of phosphate and nitrite³. When calcium nitrate is used 3% dosage is enough to protect the rebar against corrosion⁵. When sodium molybdate is used passive film is formed on steel rebar^{5,6}. The aggressiveness of chloride ion in concrete structures has been minimized by addition of inhibitors such as sodium nitrite⁷ and disodium mono fluorophosphate¹². The improved corrosion resistance in presence of uracil derivative is due to Langmuir adsorption isotherm of inhibitor on the metal surface¹³. Apart from inhibitors addition of red mud along with concrete structures improve corrosion resistance of metals. This has been confirmed by electrochemical measurements and electrical resistivity¹⁷.

Zinc coating²³, and Epoxy coating on the steel rebar have improved the bond strength. Fluoride ion even in very low concentration (< 25 ppm) is found to be more corrosive than chloride ion³⁰. Hence care must be taken to avoid presence of fluoride ion in water used to prepare concrete admixture. Zinc phosphate coating considerably reduced the corrosion rate of mild steel even in chloride medium³⁶. This has been confirmed by electrochemical studies. When sodium nitrite is used as inhibitor, the stability of the protective film increases³⁷. Among the oxyanions, the use of dichromate has been found to be very effective for mild steel⁴³. Corrosion resistance of mild steel has been investigated in carbonated and non-carbonated concrete, in presence of sodium monosulphate⁴⁶. Use of steel wire mesh reinforcement in ferrocement has been investigated. Addition of inhibitors such as calcium nitrite and tannic acid improved the corrosion resistance. Sodium nitrite has the ability to fill up the pits formed during corrosion process, by formation of passive films, in carbonated concrete pore solution. This has been confirmed by electrochemical noise measurement⁵⁴. The use of inhibitors along with, concrete admixture improved the corrosion resistance of metals. Various inhibitors and various metals and alloys used in this line are summarized in Table 1.

Conclusion

Corrosion behaviour of metals and alloys in concrete solution has been investigated in presence and absence of inorganic and organic inhibitors. Usually carbon steel and steel rebars have been used. Sometimes galvanized steel and SS316L have been used. Organic inhibitors, inorganic inhibitors and natural products have been used as inhibitors along with concrete admixture.

Corrosion resistance of metals has been evaluated by weight loss method, electrochemical studies such as polarization study and AC impedance spectra. Galvanostatic pulse technique has also been employed. The protective film formed on the metal surface have been analyzed by SEM, FTIR spectroscopy, XPS, AFM, and EDAX. The protective film consists of metal-inhibitor complex, calcium carbonate and calcium hydroxide. Experiments can be carried out at room temperature. Corrosion inhibitors fill up the pores and present the penetration chloride ion towards the metal surface passive films formed on the metal surface also increase the life time concrete rebars.

Ref	1	2	3	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19
Findings	Corrosion resistance decrease in scp solution in the order of SS316L>GS>MS	Corrosion resistance of SS316L decrease in presence of Tri sodium citrate	The efficiency of the tested inhibitors decreases with time after two years of immersion in chloride solution.	Formation of an adsorptive film on the steel surface	Inhibitor dosage on 3-4% of cement weight seems sufficient to protect the rebar against corrosion	Passive film formed on steel rebar surface in the presence of sodium molybdate	The corrosion rate of Reinforcing Steel decreased with NO ₂ ⁻ increasing concentration in SCP with Cl ⁻	Best inhibition effect on reinforcing steel in SCP	Benzotriazol is a potentially attractive alternative to nitrites for inhibiting corrosion of reinforced in concrete	The inhibition efficiency of the inhibitor was 99%	Anodic reaction of steel electrode was suppressed	The Electrochemical reaction can be suppressed by forming a disposition film in the steel concrete. interface which retards the attack by aggressive Cl	Langmuir adsorption isotherm	These Studies are expected to provide a new area in development of lesser polluting protective passive layer on galvanized coatings	The passivity of steel maintained by the addition of zinc oxide	Corrosion behavior of Zinc, Galvanised steel, Mild steel in concrete studied	The addition of the red mud is beneficial to concrete	Cement slurry coating give better protection efficiency	Among corrosion resisting Steels, the best durability performance is exhibited by the Stainless-clad reinforcing bars
Method	Weight loss, Polarization, AC Impedance	Weight loss, Polarization, AC Impedance	EIS, PC, OCP, SEM, XRD, FTIR	EIS	Electro chemical measurements	Polarization, AC Impedance, Mott- Schotty Analysis Technique	Linear Polarization resistance, electrochemical impedance spectroscopy	Polarization, AC Impedance	Polarization, AC Impedance	SEM		Polarization, AC Impedance, EIS	Polarization, FITR, XPS	EIS, Raman Spectroscopy, SEM, EDXA, XRD	Weight loss, Potential time behavior and anodic polarization technique	Microscopy and X-ray micro analysis	Conductivity of the anolyte electro chemical measurements, Electrical resistivity	Impedance, Anodic polarization	Reinforcing material and chloride content Studied
Additive	ı	I	,		1	I	1	1	1	1		1		1	I	I	Red mud	Cement Slurry Coating	1
Inhibitor	1	Tri sodium Citrate	Phosphate and Nitrite	D-Sodium glucanate	Calcium Nitrate, Calcium Nitrire, Potassium Nitrate	Sodium Molybdate	Sodium Nitrite	N-Laruroyl Sarcosine Sodium	Benzotriazol	Sodium Nitrate and D-Sodium GluGanate	di-2 ethyl hexyl sebacate	Disodium Mono flouro Phosphate	Uracil derivative	Molybdenum-Phosphorus	Zine oxide	1	,	1	1
Medium	Simulated concrete pore solution	Simulated concrete pore solution	Alkaline medium	Simulated concrete pore solution	Concrete	5% NaCl SCP	SCP	SCP	SCP	SCP	SCP	SCP	SCP	SCP	Concrete	Concrete	Concrete	Ferro cement	Concrete
Metal	Mild steel, Galvanized steel, SS316L	T916ZS	Steel	Steel	rebar	Steel	Steel	Steel	Carbon Steel	Steel	Steel	Steel	Steel	Hot dip Galvanized coated rebar	Mils Steel	Zinc, Galvanized Steel, Mild steel	Steel	Mild Steel	Bare mild Galvanized Fnoxy coated
SI. No	1.	2.	ю.	4	5.	6	7.	∞.	.6	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.

Ref	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
Findings	Formation of Surface layer on the rods	Corrosion current, corrosion potential values measured	All Zn must corrode before any of the underlying steel. Corroded	The coated reinforcement has also been found to result in about 50 percent greater bond Strength as compared to Similar but uncoated plain mild steel	Cathodic System is to induce passivation	The coated Steel rebar improved the bond Strength.	Decreasing the frequency of cracking leads to a decrease in corrosion	Evaluated for their apparent influence on passivity and corrosion rate.	The efficiency of migrating corrosion inhibitor in reducing corrosion of steel has been investigated.	Protective film formed on the reinforcing steel	Accelerating effect of fluoride (<25 ppm) has almost double corrosive effect than noted for equal concentration of chloride ion	R_{cb} , R_{f} , ci values measured	The rate of increase in corrosion rate with chloride content in mortars is considerably higher for MS than the LAS	At the free corrosion potential in an aerated solution, a decrease of the carbonate content increases the corrosion rate	Oxidation of sulphide anions to sulphur prevents potential nising into the pitting regime and leads to inhibition of the oxygen cathode reaction	Corrosion performance measured	Corrosion rate is considerably lowered by this phosphate coating	The Stability and Improvement of the passive film	Protective film formed on the surface	Calcium Nitrite based treatment applicable only to carbonated concrete without chloride.
Method	AC impedance, Linear polarization	Resistance measurement	X-ray diffraction		1		Linear Polarization Resistant, Zero resistant ammeter	1	•	Polarization, Impedance. SEM, EDAX	Weight loss, Electrochemical DC cyclic polarization and polarization resistance, Surface topographic and X-ray diffraction	Polarization, AC impedance	DC polarization, AC impedance, acoustics emission, and SEM	Polarization, EDS, XRD, XPS	Galvanostatic pulse method	Open circuit potential measurement	Potentio dynamic polarization, cronoamperometry and EIS, XRD, SEM	Polarization and Zero Resistance ammetery	Potential Monitoring Technique	Weight loss, electro chemical measurement
Additive	5% NaCl	1		1	1	1		1	1					I	NaCl	1	1	NaCl	I	
Inhibitor				Zinc coating	Cathodic current	Epoxy Coating		Calcium Nitrite	Hydroxy alkyl amine				1			Cement polymer composite, Interpenetrating polymer network coating and epoxy coating	Zinc Phosphate	Sodium nitrate	Extracts of Kola Plant and Tobacco	Calcium Nitrite
Medium	Concrete	Concrete	Concrete	Concrete	Dilute Sodium Nitrate, Chloride Contaminated concrete	Concrete	Concrete	SCP	SCP	SCP	0.01 N NaOH, Saturated lime water, Cement Slurry, and embedded mortars	SCP	Concrete	SCP	Alkali activated cement	concrete	Concrete	SCP	Concrete	Concrete
Metal	Mild steel	Steel	Galvanized Steel	Steel	Mild Steel	Mild Steel	Steel	 Polished Steel Unpolished Steel 	Steel	Mild steel	Mild Steel	Mild Steel	Mild steel, Low alloy Steel	Mild Steel	Mild Steel	Mild steel	Mild steel	Mild Steel	Mild Steel	Steel
S. S.	20.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.	31.	32.	33.	34.	35.	36.	37.	38.	39.

Table 1. (cont.) Inhibitors used to improve the corrosion resistance of metals in concrete admixture

Ref	40	41	42	43	44	45	46	47	48	49	50	51	52	33	54	55
Findings	The lean duplex 2304 has clearly better corrosion behavior than the 304 grade in simulated concrete pore solution	Corrosion performance of Stannous tin (Sn(II)) is measured.	Sodium Nitrate Reduce the corrosion Level	The potassium dichronnate inhibitor was Most effective amongst other inhibitor concentration	Nickel Stainless Steel High corrosion resistance then carbon Steel	The chemical reactions of the corrosion process in concrete and of the most commonly used as inhibitors and discussed	Sodium mono fluoro phosphate had very little on the corrosion rates of steel in both non carbonated and carbonated concrete under the conditions studied.	The Galvano static pulse technique is able to give reliable corrosion rate values of steel in concrete	The inhibitor is able to reduce the corrosion rate	Repassivation as pH raised	Galvanized Steel is a very good alternative to avoid the early damage of the structure.	The better corrosion resistance of steel embedded in migrating corrosion inhibiting system	The dose of these inhibitors for the protection of steel wire mesh reinforce Ment in Ferro cement	The concentration is above 0.5% Sodium phytate shows inhibitive effect and passivation is promoted. Molybdate and tungstate are present on the steel surface.	High concentration of nitrite can inhibit the nucleation of meta stable pits around the rust cover and accelerate the repassivation of stable pits	The dosage of high amounts of nitrites on concrete can be unfavorable.
Method	Polarization, SEM	Linear polarization, Analytical electron Microscopy.	EIS	Electrochemical Potential Monitoring Method	Cyclic anodic Polarization curve and EIS		Gravimetric Measurement	Weight loss, Linear polarization, Galvanostatic pulse technique	Electro chemical measurement		Potentio dynamic Polarization tests, Polarization resistance	FTIR	Weight loss, potentiodynamic polarization	Weight loss, Anodic polarization measurements, EIS	Electrochemical Noise Measurement	Weight loss, Polarization, EIS
Additive			1	1	5%NaCl	3% NaCl	1	5% NaCl	I	1	1		1		1	1
Inhibitor		Stannous tin Sn(II)	Sodium Nitrate	Potassium dichromate		Calcium Nitrite, Calcium nitrate, Amino alcohol, DMEA, Cyclo hexyl ammonium benzoate, Di isopropyl ammonium benzoate	Sodium mono sulphate		Alkyl amino alcohol	Chromate	Zn	0.3%Sodium Citrate+0.3% Sodium Stannate Migrating inhibitor amino alcohol, Amines, Nitrides	Calcium Nitrite and tannic acid	Sodium molybdate, Sodium tungstate, Sodium Nitrite Sodium phytate	Sodium nitrite	Nitrite
Medium	SCP	Cement Paste	SCP	Concrete	SCP	J	Concrete	Concrete M15,M20, M30,M35	Concrete	Concrete	SCP	Portland Pozzolona Slag cement	concrete	Acidified concrete pore solution	Carbonated concrete pore solution	SCP
Metal	Duplex Stainless Steels	Mild steel	Steel	Mild Steel	Low Nickel Stainless Steel, AISI 304 SS Carbon Steel	Steel	Steel	Steel	Steel	Steel	Galvanized steel	Steel	Steel	Rebar	Carbon Steel	Steel
SI. No	40.	41.	42.	43.	44.	45.	46.	47.	48.	49.	50.	51.	52.	53.	54.	55.

Table 1. (cont.) Inhibitors used to improve the corrosion resistance of metals in concrete admixture

Г

Ref	56	57	58	59	60	61	62	63	64	65
Findings	The presence of nitrite ion efficient passivation of the rebar that maintain with time	Hydrophobic treatment is the most effective treatment to improve the corrosion resistance of Galvanized steel reinforcement in concrete	None of the alternative inhibitors studied was comparable to nitrite in terms of protective efficiency	The organic commercial inhibitors reduce the ingress of chlorides by filling concrete pores and blocking the porosity of concrete by the formation complex compound	The technique can be used as qualitative measure of the corrosion rate of reinforcing steel in concrete	The inhibitor was able to reduce the corrosion rate only when the iniated chloride was below 0.16 wt %	compressive stress produces more severe degradation of the passive film than does the tensile stress.	Embedded sensor is robust and suitable for installation in reinforced concrete, hence capable of detecting changes in the immediate vicinity of the steel for a longer period.	AFM images revealed detail of the localized corrosion behavior	The CI ⁻ concentration had little effect on Stainless Steel.
Method	Polarization Resistance	Water Absorption, electro chemical measurements, Chlorides penetration, Visual observation	Corrosion potential, polarization resistance	Potentio dynamic, potentiostatic measurement	Weight loss, linear polarization resistance	EIS	EIS,SEM	Embedded capacitor sensor (ECS)	SEM, AFM, EIS	Potentio dynamic polarization, alternating current impedance
Additive	1	1	1		1	1	1		1	1
Inhibitor	Calcium Nitrite	Surface and Bulk Hydrophobic	Sodium nitrite, Resorcinol, Phloroglucinol, Sodium Phosphate, Sodium gluconate, Calcium gluconate, zinc oxide, urotropin	Sodium mono fluro phosphate, alkanolamines, amines, Zinc oxide molibdates, borates, Stannates	1	Alky1 amino alcohol	1		1	
Medium	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete	SCP
Metal	Steel	Galvanized Steel	Steel	steel	Steel	Steel	Carbon steel	Steel	Steel	Stainless steel
SI. No	56.	57.	58.	59.	60.	61.	62.	63.	64.	65.

Acknowledgments

The authors are thankful to their management and St.Joseph's Research and Community Development Trust, Dindigul for their help and encouragement.

References

- ¹Rajendran, S.; Muthumegala, T.S.; Krishnaveni, A.; Manivannan, M., Zastita Mater., **2011**, 52(1), 35.
- ²Rajendran, S.; Muthumegala, T.S.; Pandiarajan, M.; Nithya devi P., *Zastita Mater.*, **2011**, *52*(2), 85.
- ³Dhouibi, L.; Triki, E.; Rodrigues, M.; p.Raharinaivo, A., *Mater.d Struct.*, **2003**, *33*, 530.
- ⁴Li, J-H.; Zhao, B.; Du, R-G.; Lin, C-J., *J. Functional Mater.*, **2007**, *3*, 148.
- ⁵Ostoner, T.A.; Justness, H., Adv. Appl. Ceram., 2011, 110, 131.
- ⁶Zhou. X.; Yang, H.-Y.; Wang, F-H., Corros. Sci. Protect. Technol., **2010**, 22, 343.
- ⁷Zhu, Y.; Lin C., *Metallurgica Sinica*, **2010**, *46*(2), 245.
- ⁸Qiao, B.; Du, R.-G.; Lin, C.-J., *J. Functional Mater.*, **2009**, 40, 1496.
- ⁹Mennucci, M.M.; Banczek, E.P.; Rodrogues, P.R.P. Costa, *Cement and Concrete Composites*, **2009**, *31*, 418.
- ¹⁰Chen, W.; Wu, Q.; Du, R.-G.; Lin, C-J.; Sun, L, J. Functional Mater., 2009, 40, 611.
- ¹¹Chen, Y.; Wang, W., Yang, J., *J. Univ. Sci. Technol.*, **2007**, *29*, 21.
- ¹²Zhang, D-Q.; Zhang, W-P.; Wang, W.; Zhou, G.-D., Corros. Protect., 2007, 28, 55.
- ¹³Nakayama, N., *Electrochemistry*, **2002**, 70, 322.
- ¹⁴Singh, D.D.N.; Ghosh, R., Surface and Coating Technol., 2008, 202, 4687.
- ¹⁵Ha, T.H.; Bae, J- H.; Ha, Y-C.; Lee, H.G.; Park, K-W.; Kim, D.-K., *Trans. Soc. Advancement of Electrochem. Sci. Technol.*, 2004, 39, 1.
- ¹⁶Blaszczynski, T.; Lowin-Kluge, A., Corrosion, 2007, 63, 1063.
- ¹⁷Riberio, D. V.; Labrincha, J.A.; Moreli, M.R, Cement and Concrete Res., **2012**, 42, 124.
- ¹⁸Rengaswamy, N.S.; Saraswathy, V.; Balakrishnan, K., J. Ferrocement, **1992**, 22, 359.
- ¹⁹Rasheeduzzafar, Fahd H.; Dakhil, Fahd. Bader; Maher, A., Khan, Mohammed Mukarramt, ACI Mater. J., **1992**, 89, 439.
- ²⁰Sagoe-Crentsil, K.K.; Glasser, F.P.; Irvine, T.T.S., *Brit. Corros. J.*, **1992**, 27, 113.
- ²¹Flis, J.; Sabol, S.; Pickering, H.W.; Sehgal, A.; Osseo-Asare, K.; Caddy, P.D. Corrosion, **1993**, 49, 601.
- ²²Hime, W.G.; Machin, M., Corrosion, **1993**, 49, 858.
- ²³Kapse, G.W.; Jain, V.K, Indian Concrete J., 1984, 58, 354.
- ²⁴ Chadwick, G.K.Jr., Corros. Sci., 1992, 36, 2193.
- ²⁵Thangavel, K.; Rengaswamy, N.S.; Balakrishnan, K., Indian Concrete J., **1995**, 69, 289.
- ²⁶Arya, C.; Ofori-darko, F.K., *Cement and Concrete Res.*, **1996**, *26*, 345.
- ²⁷Martin, Farrel. Olek, Jan, Proc. Mater. Eng. Conf., 1996, 2, 1111.
- ²⁸Elsener, B., *Corrosion*, **2000**, *56*, 727.

²⁹Velva, L.P.; Cebada, M.C., ASTM Spec. Techn. Publ., 2000, 1399, 170.

³⁰Ghosh, D.D.N.; Singh, B.K., Corros. Sci., 2002, 44, 1713.

- ³¹Sieber, J.; Broton, D.; Fales, C.; Leigh, S.; MacDonald, B.; Marlow, A.; Nelles, S.; Yen. J., *Cement and Concrete Res.*, 2002, 32, 1915.
- ³²Ghosh, R.; Singh, R,J.; Singh, D.D.N, Corros. Prevent. Control, 2003, 50, 94.
- ³³Huet, B.L.; Hostis, V.; Miserque, F.; Idrissi, H., *Electrochim. Acta*, 2005, 51, 172.
- ³⁴Holloway, M.; Sykes, J.M., Corros. Sci., 2005, 47, 3097.
- ³⁵Venkatesan, P.; Palaniswamy, N.; Rajagopal, K., Progress in Org. Coating, 2006, 56, 8.
- ³⁶Simescu, F.; Idrissi, H., Sci. Technol. Adv. Mater., 2008, 9, Art No.045009.
- ³⁷Moayed, M.H., Abbaspour, Z.; Sadegian, M., Int. J. Eng. Trans. B. Applications, **2009**, 22, 369.
- ³⁸Loto, C.A.; Loto, R.T.; Popoola, *Int. J. Electrochem. Sci.*, **2011**, *6*, 3452.
- ³⁹Ngala, V.T.; Page C.L.; Page, M., Corros. Sci., 2002, 44, 2073.
- ⁴⁰Alvarez, S.M.; Bautista, A.; Velasco, F., Corros. Sci., **2011**, 53, 1748.
- ⁴¹Sagoe–Crentsil, K.K.; Glasser, F.P.; YilMaz, V.T., Cement and Concrete Res., **1994**, 24(2), 313.
- ⁴²Saura. P.; Zomoza, E.; Andrade, C.; Garces.P., Corrosion, 2011, 67.
- ⁴³Loto. C.A.; Omotosho, O.A.; Popoola, A.P., Int. J. Phys. Sci., 2003, 6, 2275.
- ⁴⁴Fajardo, S.; Bastidas, D.M.; Criado, M.; Romero, M.; Bastidas, J.M., *Construction and Building Mater.*, **2011**, *25*, 4190.
- ⁴⁵Gaidis, J. M., Cement and Composites, 2004, 26, 181.
- ⁴⁶Nagala, V.T., Page, C.L., Page, M.M, Corros. Sci., 2003, 45, 1523.
- ⁴⁷Sathyanarayanan, S.; Panjali Natarajan, K.; Saravanan, S.; Srinivasan, G.; Venkatachari, *Cement and Concrete Composites*, **2006**, *28*, 630.
- ⁴⁸Morris, W.; Vazquez, M., Cement and Concrete Res., 2002, 32, 259.
- ⁴⁹Schieb, P.; Mayer, T.F.; Ostermininski, K., *Mater. Corros.*, 2008, 59, 115.
- ⁵⁰Farina, S.B.; Duffo, S., *Electrochim. Acta*, **2007**, *52*, 5131.
- ⁵¹Thangavel, K.; Muralidharan, S.; Saraswathy, V.; Quraishi, M.A.; Ha-Won Song, *Arabian J. Sci. and Eng.*, **2009**, *34*, 83.
- ⁵²Akhtar, S.; Quaraishi, M. A.; Arif, M., Arabian J. Sci. and Eng., 2009, 34, 107.
- ⁵³Tang, Y.; Zhang, G.; Zuo, Y., Construction and Building Mater., 2012, 28, 327.
- ⁵⁴Ze, Hua; Dong. Wei; Shi, Xing; Peng, Guo, Corros. Sci., 2011, 53, 1322.
- ⁵⁵Garces, P.; Saura, P.; Zornoza, E.; Andrade, C., *Corros. Sci.* 2011, *53*, 3991.
- ⁵⁶Sanchez, M.; Alonso, M.C., Construction and Building Mater., 2011, 25, 873.
- ⁵⁷Tittarelli, F.; Moriconi, G., *Cement and Concrete Res.*, **2011**, *41*, 609.
- ⁵⁸Gonzalez, J.A., Ramirez, E. Bautista, *Cement and Concrete Res.*, 1998, 28, 577.
- ⁵⁹Ormellese, M.; Berra, M.; Bolozoni, F.; Pastore, T., Cement and Concrete Res., **2006**, *36*, 536.

- ⁶⁰Law, D.W.; Cairns, J.; Millard, S.G.; Bungey, J.H.; NDT&E Int., 2004, 37, 381.
- ⁶¹Morris, A.; Vazquez, Vico M., J. Appl. Electrochem., **2003**, 33, 1183.
- ⁶²Feng, X.; Zuo, Y.; Tang, Y.; Zhao, X., Lu, X. *Electrochim. Acta*, 2011, 58, 258.
- ⁶³Rahman, S.F.A.; Ismail, M., Muhammad, B.; Md Noor, N.; Bakhtiar, H., *Malaysian J. Civil Eng.*, **2011**, 23, 1.
- ⁶⁴Zhang, F.; Pan, J.; Lin, C., Corros. Sci., **2009**, *51*, 2130.
- ⁶⁵Gong, L.; Zhu, L.-L, Corros. Sci. Protection Technol., 2007, 19, 397.
- ⁶⁶Ormellese, M.; Lazzari, L.; Goidanich, S.;, Fumagalli, G.; Brenna, A., *Corros. Sci.*, **2009**, *51*, 2959.
- ⁶⁷Broomfield, J.P., Corrosion of Steel in Concrete: understanding, investigation and repair, Taylor and Francis, 2003.

- ⁶⁸Soeda, K.; Ichimura, T., Cement Concrete Compos., **2003**, 25, 117.
- ⁶⁹Ormellese, M.; Berra, M.; Bolzoni, F.; Pastore T., Cement Concrete Res., 2006, 36, 536.
- ⁷⁰Saraswathy, V.; Song, H.W., Build. Environ., 2007, 42, 464.
- ⁷¹ So[°]ylev, T.A.; Richardson, M.G., *Constr. Build. Mat.*, **2008**, *22*, 609.
- ⁷² Satapathy, A.K.; Gunasekaran, G.; Sahoo, S.C.; Kumar A.; Rodrigues, P.V., *Corros. Sci.*, **2009**, *51*, 2848.
- ⁷³ Uhlig, H., Corrosion and Control, George Harrap and Co. Ltd., 2004; Wang, X.; Li, G.; Li, A.; Zhang, Z., J. Mater. Process. Technol., 2007, 186, 259.

Received: 07..11.2012. Accepted: 01.12.2012.