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Correlation between chemical structure and enantioselectivity in baker’s yeast reduction of a set of carbonyl compounds was constructed by
means of a multi-layer neural network using the back-propagation algorithm. To evaluate the predictive power of the neural network (NN)
model, the cross-validation procedure was used, 88 % of the reactions were correctly predicted.
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Introduction

Concerning the enantioselective reduction of carbonylated
compounds, the prediction of the preferred alcohol
enantiomer in synthesis is a difficult task. For the prediction
of the R/S configuration in an asymmetric reduction of
carbonyl compounds, Prelog, Cram and Felkin have
developed models of limited applicability based on steric
criteria.!

J. Aires de Sousa et al have studied the enantioselective
reduction of ketones by DIP-chloride,? the addition of
diethylzinc on benzaldehyde? and the enantioselective
hydrolysis of ester by Pseudomonas,® all predictions were
made using neural network. Using also neural networks for
prediction of enantioselectivity, W. M. F. Fabian et al * have
described the ring opening of epoxide by hydrolases.

In our study, the baker’s yeast (Saccharomyces cerevisiae)
enantioselective reduction of p-ketoacid derivates was
chosen because of its importance in preparation of chiral
alcohols (Fig. 1). Numerous enzymatic systems which are
present, can perform such a reduction, but different
experimental conditions do not generally influence the
resulted configuration.®
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Figure 1. Bakers' yeast reduction of B-ketoacid derivates
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Neural Networks (NNs) have successfully been used in
organic chemistry,” particularly in QSAR studies, where
numerous enzymatic systems and metabolic ways are
implicated.® NNs are mathematical models of biological
neural systems which fit non-linear problems and give better
correlations than the multiple linear regression (MLR) ones.
A description of the back-propagation algorithm was given
previously® as well a more extensive description.” An
attempt of structure-enantioselectivity relationships using
neural networks was already described,'® but the authors
were unable to make predictions with molecular refraction??
and finally proposed a Prelog model.

Methods

For our study, 35 reactions were extracted from reviews
by Servi and Czuk et al.5, where we can find the nearby
experimental conditions (Table 1). Under these reactions
the enantioselectivity was generally total, therefore our
attention was focused on the prediction of R/S configuration
of the produced enantiomer.

Previous studies®!! have shown that the correlation
between the structure of the starting ketone and the alcohol
obtained depends on steric criteria but other effects can also
occur such as electronic ones. Therefore, the substituting
groups R1 and Rz can be described by 2 kinds of parameters,
electronic and steric parameters.

Electronic parameters: Hammett!? assigned to every
substituent a constant ¢ which represents its electronic
effects on the reaction site. Taft et al.*® have suggested two
models where inductive and resonance contributions are
quantitatively separated.

Steric parameters: Several studies'® could be found in
literature concerning the steric effects of substituent groups
in organic reactions.?’
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Table 1: Chemical structures of the compounds studied
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No R1 R2 No R1 R2 No R: R2

1 CHs C2Hs 13 C2Hs CgHi7 25 CH2CH2CH=CH: tCsHo

2 CHs nCsHz7 14 NCsH7 CgHaz 26  CH2CH2C(CH3)=CH: CHs

3 CHs nCsHu 15 NCsHg C2Hs 27  CH2CH2C(CH3)=CH: C2Hs

4 CHs nCsH17 16 CHCI CHs 28 CH2CH2CH=CH: H

5 CHs iC3H7 17 CH:CI C2Hs 29 CH2CH2CH=CH: CHs3

6 CHs Ph 18 CH2Br C2Hs 30 CH2CH2CH=CH: C2Hs

7 CHs CHs 19 CH2Br nCsHz 31 CHCI nCsH17

8 CHg nCaHo 20 CH2Br nC7H1s 32 CoHs nCsH17
CHs

9 CHs tCaHo 21 CH2Br nCsHu7 33  NGCsHy H

10 CHs 22 CCls C2Hs 34 NCszH7 C2Hs

11 C2Hs C2Hs 23 CFs C2Hs 35 NCs4Hq H

12 Ph C2Hs 24 CHs C2Hs

Hansch et al.*® proposed molecular refraction and
molecular mass as sample measures of steric effects of
substituting groups. In this latter study, the steric parameter
is the volume of the substituents (V) computed using the
Gavezzotti method.*®

Results and discussions

A three layers Neural Network (NN) was used with the
back-propagation (BP) algorithm for the prediction of
predominant configuration (R or S) of the final product.
Two methods were used to describe the reactions:

First method: Every reaction is described by 6 parameters
om, op and V for Ry and the same for Ry, this represents the
input layer (6 neurons). The output layer contains only one
neuron, which takes the value of 1 if the predominant
configurationis Sand O if it is R.

Second method: In this case, four parameters were used to
describe each substituent (om, op, V and L), where L is the
Verloop?® parameter L represents the length of the
substituent along the bond axis between the substituent atom
and the parent compound, it was chosen because it permits
to distinguish isomers.

We used a network with 6 or 8 units and a bias in the
input layer, a variable hidden layer including bias, and one
unit in the output layer. Input and output data were
normalized between 0.1 and 0.9. The weights were
initialized to random values between -0.5 and +0.5 and no
momentum was added. The learning rate was initially set to
1 and was gradually decreased until the error function could
no longer be minimized. All computations were performed
using our own programs, written in the C language.

Learning. In order to determine the best architecture,
different NNs have been tried using the two description
systems [6-x-1 and 8-x-1; x = 1, 2, 3, 4, 5, 6, ...) with the all
35 reactions as a training set. The criteria used for the
comparison of the architectures is the percentage of
reactions correctly classified. We consider that we have a
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correct classification for a reaction if the output neuron was
greater than 0.6 for S configuration and less than 0.4 for R
configuration. After 2000 iterations, the NNs of structure [6-
x-1] (x=2,3,4,5) were able to classify 34 of the 35 reactions
studied.

Prediction. The predictive ability of an NN is its ability to
give a satisfactory output for a molecule not included in the
examples the NN learned. To determine that predictive
ability, cross-validation has been used.?* After 1400
iterations in the cross validation procedure, 29 of the 35
reactions were correctly predicted (Table 3) with an NN [6-
3-1] and [6-4-1] and 31 reactions of the 35 reactions (88 %)
are correctly predicted with an NN (8-3-1). Clearly the
parameter L provides new information to the NN.?? The use
of percent (% of S) or 2 neurons (0,1) as output does not
improve the results.

We have used om and o, parameters introduced by Taft
for electronic effects of meta and para positions. These
parameters are available in the literature!* and Kvasnicka
has shown'® that these parameters can be computed by a
neural network using simple structural data as inputs.

Table 2. Prediction results using the first method

Number of reactions
correctly predicted/35

NN architecture

6-1-1 26
6-2-1 27
6-3-1 29
6-4-1 29

Table 3. Prediction results using the second method

Number of reactions
correctly predicted/35

NN architecture

8-1-1 26
8-2-1 30
8-3-1 31
8-4-1 30

DOI: 10.17628/ECB.2016.5.129

130




Prediction of configuration in the reduction of ketoacids with yeast
Conclusion

After the neural network has been fully trained, it has
shown that the network was able to form reliable
generalizations to predict R/S configuration in baker’s yeast
reduction of the carbonyl compounds presented to it. This
shows that steric and electronic parameters (om, op, V and
L) provide sufficient information to a neural network for
prediction of the reactivity of the compounds studied. This
study represents a first approach to the prediction of
enatioselectivity, the efficiency of induction depends on the
concentrations of substrats, and for a quantitative prediction
this factor must be added to steric and electronic parameters.
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