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Abstract 

In various real-time situations, the Mobile Robot Path Planning Problem (MRPPP) is one of 

the most prevalent study fields. In this article, a hybrid path planning technique for mobile 

robots is used and tested in various environment settings. This approach adopts pre-

improvisation and post-improvisation methods for achieving the optimized path with quality 

with less computational cost. An MRPPP is resolved using a hybrid of the Artificial Potential 

Field (APF) method and the Multi-Objective Genetic Algorithm (MOGA). The suggested 

hybrid technique divides the implementation process into three stages. An Artificial Potential 

Field (APF) algorithm is used to find all feasible paths between the start and destination 

locations in an environment in order to construct the initial population. By calculating the 

artificial field produced by obstacles and the target, collision-free paths are created. An 

optimal solution path is extracted from the initial population of candidate paths using the 

population-based evolutionary method. In this article, the non-dominated sorting genetic 

algorithm II (NSGA-II) is applied to identify the optimal solution by concurrently 

maximizing all the objectives. In the end, the Three Phase Path Refinement 

Technique(TPRT)  is employed to smoothen the derived optimal path. The suggested 

approach is employed in several maps and the results are compared with other path-planning 

algorithms to demonstrate the effectiveness of the system. 

Keywords: Multi-objective Genetic Algorithm, Artificial Potential Field Algorithm, 

Smoothening of the path, Quality Initial Population, Path Planning Algorithm. 

1. Introduction 

Mobile robot path planning improves efficiency, safety, and effectiveness in a variety of 

industries and domestic applications. The major goal of this article is to use a hybrid 

technique to ascertain the MRPPP's best course of action inside the MOGA framework. 

While using the hybrid technique, the objectives must be specified and need to be maximized 

or decreased. The following factors are taken into consideration in order to arrive at the 

consequent path while determining the solution to the MRPP issue. 

 The length of the path is always viewed as a significant objective in the MRPP 

problem. Hence the time it takes to reach the target, which is the primary objective of this 

problem, is influenced by the length of the navigational path. 
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 In a practical situation, the number of turns made by each specific path throughout the 

traversal in addition to the length is objective. The degree of turning from one place to 

another in the navigational path is used to quantify the smoothness of the path, which is 

considered another objective. This objective is preferred since a lesser degree of turning or a 

larger degree of turning might cause the Mobile Robot to tumble. So, the safety (Hidalgo-

Paniagua et al., 2016) of the Mobile Robot is associated with this objective  (Hidalgo-

Paniagua et al., 2015). The quantity and intensity of turns taken on the subjective paths are 

directly connected to another objective energy consumption (Elhoseny et al., 2018) needed to 

get to the desired location.  

 The fitness values are estimated for the paths for the objectives then the Pareto 

optimality principle is employed, which is defined as a non-dominated strategy. For the 

selection phase of the MOGA, elitism is applied to improve the quality of the population in 

each generation. 

  As the last stage, TPRT is applied to smoothen the path which will reduce the turnings 

further, as a result, reduce the energy consumption. As a whole, this proposed methodology 

ensures the quality of the path for the traversal of the mobile robot in all aspects. 

2. Related works 

The advancement of robotics, where MRPPP is a prominent research topic, played an 

inevitable impact on the automation of industries. In order to reach the goal from the source 

point by the mobile robot with the higher performance, a lot of studies have been conducted. 

As substantially all engineering-related features are involved in the robotic research domain, 

there is a span to attain goals in a variety of methods. Due to the complexity of the RPP, it is 

classified as an NP-hard problem (P. Raja, 2012), making it unattractive to deduce the 

solution path using a deterministic approach (E. Khanmirza, M. Haghbeigi, 2017), even if it 

may produce an accurate solution if one exists. 

 The non-deterministic strategies offer an optimum solution to get the solution within a 

given amount of time or generations, maybe with a close to ideal solution. The quality of the 

solution is influenced by the operators used to generate the solution in population-based 

meta-heuristic algorithms (Suresh et al., 2013). The solution obtained by using evolutionary 

algorithms is close to optimum since it outperforms deterministic approaches (Suh et al., 

2011) for the huge solution space. 

 A population-based technique called the Multi-Objective Genetic Algorithm searches 

a large randomly generated solution space for the optimal solution (Suresh et al., 2017). Due 

to the intrinsic properties of the algorithms, the genetic algorithm (GA) approach is the most 

trustworthy search technique for complicated optimization problems. For MRPP, exhaustive 

experiments are performed to identify the optimal path using GA with multiple modifications 

in the execution phases and the number of generations, while only taking into account one 

objective as the length of the path. 
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 If there are many objectives to be taken into consideration, they are instead added 

weight for the objectives or used as a constraint. The result of these methodologies provides 

only one optimal solution. It requires expertise in the relevant domain since even a minor 

variation from the value may impact the effectiveness of the solution.  

 By using MOGA, a group of non-dominated solutions may be created, allowing the 

decision-makers to make their choice based on their preferences and the trade-off between 

the objectives. Nevertheless, using the Pareto optimization technique for such a large 

population multiplies the computing complexity of the process. 

 The suggested technique makes use of the Pareto optimality principle, but to get 

around some of its limitations, it is combined with an alternative method called the Artificial 

Potential Field algorithm, which is used to generate the most efficient initial population. 

Using Pareto optimization lowers the computing cost as the original population was reduced. 

 The phases of the proposed TSOM-RPP are introduced in the following sections, 

which also include an illustration of the APF algorithm, a description of how each phase of 

the GA for MRPP is implemented, an implementation of Pareto optimization, a discussion of 

the principle of elitism, explanation for the TPRT, results from experiments for various 

environments, a list of inferences drawn from the results, and a conclusion.  

Constuct occupancy 

matrix 

Apply APF to generate 

initial population 

Employ Genetic 

Algorithm 

Use PARETO 

Oprimizaton  

Apply Elitism Principle 

Derive optimal path 

Fine tune the path by 

TPRT 

Figure 1 Flowchart for proposed TSOM-RPP model 
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3. Three-Stage Optimization Model for Robot Path Planning(TSOM-RPP) 

 The phases of the proposed TSOM-RPP are illustrated in Figure 1. It starts with 

initial population solution space creation and ends with applying the TPRT for the 

smoothening of the obtained optimal path. 

Stage 1: Apply the APF algorithm to generate the initial population 

Stage 2: Employ the Pareto optimization technique and elitism 

Stage 3: Exercise the Three Phase path Refinement Technique(TPRT) for the derived 

path 

 This proposed model aims to improve the quality without increasing the 

computational cost. The first stage improvises the quality of the initial population at the same 

time stage 3 is further improvising the quality of the derived path to reduce the energy 

consumption.  

Stage 1: Apply the APF algorithm to generate the initial population 

 The Artificial Potential Field process yields a potential field matrix by allocating 

appropriate potential value to each environment node, beginning with the destination 

node(Siming et al., 2018), which assists in finding all potential paths to reach the goal point 

from the starting location(Zafar & Mohanta, 2018). The generated solution paths establish the 

solution space to apply GA. 

Stage 2: Employ the Pareto optimization technique and Elitism principle 

 Using Pareto Optimization(Konak et al., 2006), the population resulting from the 

genetic operations is ordered according to the number of dominance(Deb et al., 2010). The 

sets of ranked paths that are expected to include the best paths as a result of the objective 

evaluation are used to choose the necessary number of optimal paths. To rank the top paths to 

a solution, Pareto optimization is used. Each generation will get the better-qualified paths due 

to the Elitism principle for the selection of the offspring to the next generation.  

Stage 3: Exercise  the Three Phase path Refinement Technique(TPRT)  

 The smoothing procedure is applied to the derived optimal path after using GA. This 

technique is approached in three phases to get a smooth path. 

Typically, the initial solution space is rather noisy because of the randomly created 

paths. These randomly generated paths demand a considerable amount of time to converge to 

the optimal path if GA is applied to them. To enhance the path qualitatively, the suggested 

technique was applied in three steps. APF is used in the first stage of the three-stage model 

that is being suggested, and the MOGA is implemented using the Pareto optimality principle. 

Compared to randomly generated paths, the initial population produced by APF has a path of 

higher quality. The APF produces an initial population for GA, which will shorten the 

convergence time. While applying GA, multiple objectives are considered such as length, 

number of turns in the path, and degree of diversion as penalty.  

The initial population is produced from a potential grid that is constructed to deploy 

APF. The target node with the highest potential value, and as it moves through its 

neighboring nodes, the potential value steadily declines. If the adjoining node's potential 

values are the same, the subpaths will emerge. The output of APF is subjected to GA after 

producing each potential path. The fitness value is determined for each path by adding 

objective values. The total number of cells traversed to arrive at the desired location is 
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accounted for by the objective length. For each path, the number of turns and degree of 

departure from the prior direction are considered as other objectives to be satisfied. 

When there are many objectives, the Pareto optimization principle is used to assess how 

effective the approach is. Non-dominated paths, or the paths where no other possible paths 

can dominate it without lowering at least one of the objective values, constitute the Pareto 

front. In light of all other objectives, no alternative solution is therefore superior. Based on its 

non-dominated feature, paths are graded. Another concept that aims to improve GA 

performance by transferring the quality paths to the upcoming generation is called elitism. 

The convergence time is therefore minimized. 

The normalized distance between two neighboring solutions concerning the objective 

values is added up to assess the variety of the non-dominated paths. The least crowded 

solutions are those that have the greatest value. The outcomes are examined with existing 

technologies and for the provided maps.  

The length of the path may be taken into account as a goal for solving the MRPPP, and 

the other objectives may be taken into consideration as model constraints. Yet, in this 

instance, there will only be one solution found, preventing decision-makers from considering 

the benefits and drawbacks of a larger number of options with multiple objectives. As a 

result, the Pareto optimality principle(A & Panchu, n.d.) is used in this suggested technique to 

find a solution for the MRPPP with multiple objectives (Ajeil et al., 2020; Geetha et al., 

2011; Li et al., 2016; Mahmud et al., 2019). 

Equally spaced nodes that form square grids constitute the environment(Bae et al., 

2019). The illustration depicts the navigational area of the mobile robot environment, which 

includes open space, obstacles, the robot's starting point, and its target point. The 

environment in this diagram is represented by n × n unit-length discretized square grids. 

4. Implementation 

The principle of the APF is, the robot is influenced by the fields produced by goals and 

obstacles. The repulsive force is generated by obstacles and the attractive force is generated 

by goals.  

 

 

 

 

 

 

 

 

 

 

 

 

APF is implemented by constructing a potential grid. From that initial pop is generated. 

Arbitrarily chosen, the largest potential value is assigned to the target node[Figure 2 and 

Figure 3 Sample paths generated through 

the potential grid Figure 2 Potential Grid for the sample 

environment 
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Figure 3].  While Traversing through its adjacent nodes, potential decreases gradually. If the 

adjacent node has the same potential, leads to the sub-paths. GA is applied to the resulting 

initial population. 

The potential of neighbors starting from the destination  Pnode = Plarge − Dstep  

4.1. Fitness Value Estimation 

Three objectives are taken to measure the fitness of the i
th

 path namely the length of 

the path(Li), the number of turns in the path(Ti), and the degree of turns of the path(Di). 

Initially, Li  = 0, Ti  = 0, Di  = 0  

Length (Li) =  number of cells in the  i
th

 path 

Number of turns of the path Pi  where n = number of cells on the path 

                      

                                  0   if  ∠Aj-1AjAj+1 = 0° or 360°  

                    Aj =        1  else 

                    Aj = Angle formed by three consecutive  cells  

 

 

Deviation of the path Pi =  

 

Where n = number of  cells on the path 

               4 if ∠Aj-1AjAj+1 = 180° 

    3 if ∠Aj-1AjAj+1 = 135° and 225° 

Aj =    2 if ∠Aj-1AjAj+1 = 90° and 270°  

               1 if ∠Aj-1AjAj+1 = 45° and 315°                                                 

              0 if ∠Aj-1AjAj+1 = 360° 

  

Using the above functions the objective value is calculated for each objective in turn fitness 

value is calculated as the sum of the objective values. Specifically, the Degree of deviation 

from the previous direction is considered a penalty and the calculation is shown in Figure 4. 

4.2. Pareto Optimization 

When several competing objectives are taken into consideration during an optimization 

process, Pareto optimality is a measure of efficiency (Lavin, 2015). If there is no alternative 

path that improves the performance of any of its target parameters without compromising at 

least one of the other criteria, the process is known as Pareto optimization(Li et al., 2016). If 

no alternative path dominates it, a path is said to be Pareto optimum or non-dominated. The 

set of all non-dominated paths(Xue, 2018) taking into account a trade-off between all 

objectives constitutes the Pareto front. 

4.3. Implementation Of Elitism 

 Genetic algorithms use operations like crossover, mutation, and selection to create 

offspring of the following generation. A philosophy known as elitism (Deb et al., 2002) is 

used to improve the effectiveness of the GA. The fundamental idea of elitism is to pass on the 

best members of the present generation to the following generation to retain the quality of the 

generation. This principle also shortens the convergence period as opposed to the nonelitism 

Figure 4 Penalty 

calculation for  Deviation 
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principle. A small percentage of the fittest candidates are copied to the following generation, 

by the elitism principle. 

4.4. Crowding Distance 

 Deb (Deb et al., 2002) devised the crowding distance (CD), a technique that is applied 

in the NSGA-II (Non-dominated Sorting Genetic Algorithm II) (Xue, 2018). By estimating 

the density of the solution in the Pareto optimum front, this method assures the diversity of 

solutions.  In a multi-objective environment, the CD is calculated by adding the normalized 

distances for each individual between two neighboring solutions, related to all objectives 

(Ahmed & Deb, 2013). The least crowded solution is the one with the largest overcrowding 

distance value. 

                                         
 = 

    
      

    

    
      

    
  

where i = i
th

 solution’s fitness value 

         m = m
th

 objective 

Therefore     
  - distance from the neighbor’s for the i

th
 solution is calculated 

  
    - Fitness value of the (i-1)

th
 (previous) solution for the m

th
 objective 

  
    -  Fitness value of the (i+1)

 th
 (next) solution for the m

th
 objective 

  
    - Maximum fitness value of the m

th
 objective 

  
     - Minimum fitness value of the m

th
 objective 

CDi = ∑    
  

    

where  CDi  =  sum of crowding distance of i
th 

solution for all m objectives. 

By estimating all the crowding distance values, by comparing the CDi values the one which 

satisfies the below condition will be rejected. 

                            CDi < CDj 

  where CDi and CDj are crowding distances of two different solutions.    

 MAP 1 

MAP 2 
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5. Implementation of the Three-Stage Optimization Model 

According to the proposed methodology, the first stage is generating the initial population by 

applying the APF algorithm. In this stage, the potential has to be assigned for each cell from 

the maximum for the destination. Arbitrarily for the destination, the highest potential value is 

assigned as 3000 and all cells occupied with obstacles are assigned with the highest negative 

potential as -3000. The neighbor cells are decremented by 10 for each layer.  

In the second stage,  the Pareto optimization technique and elitism are employed. 50 

generations are taken for the implementation. At each generation, the genetic operators such 

as crossover, mutation, and selection operators are applied which are specific to the path 

planning solution space. The paths could not be selected randomly as in other domain 

problems. to employ genetic operators. 

 

Table 1 Comparison of average objective values for  8 environment maps 

Map 1 A* Dijkstra EGA APF HYBRID 
 

Map 2 A* Dijkstra EGA APF HYBRID 

Length 
44.6 55.18 39.53 31 31 

 
Length 

250.28 282.81 249.36 240 240 

Penalty 
49 73 49 55 36.39 

 
Penalty 

660 933 615 139 127 

Turns 
270 300 300 228 159.12 

 
Turns 

600 585 615 588 527.38 

MAP 3 

MAP 4 

Figure 5 Sample Environments, Initial paths and optimized 

path 
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8 MAPS are taken for experiment and analyze the proposed methodology and also to 

compare the efficiency of the other methods with objective values for the individual 

objectives and fitness values for the paths. Sample configuration maps are shown in figure 

MAP 1 to MAP 4 are shown in the figures with a potential grid size of 30 x 30. 

The figures[Figure 5] illustrate the environment map for 4 sample workspaces for the mobile 

robot, the corresponding paths generated by applying the APF algorithm, optimized path 

generated after employing the Pareto optimality and elitism principles for MOGA.  

6. Results and discussion 

 The results obtained by applying the algorithms are illustrated in  

Table 1 as well as through the chart, from the results produced, it is clearly evident that the 

proposed algorithm is more efficient compared to the other four algorithms namely A*, 

Dijkstra, EGA, and APF for different maps. 

7.  Comparison analysis 

 The figures in Figure 6 are the illustration of the comparison of average objective 

values for the individual objectives of all the given 8 environmental maps. 

 

             

Map 3 A* Dijkstra EGA APF HYBRID 
 

Map 4 A* Dijkstra EGA APF HYBRID 

Length 
142.57 200.45 131.4 115 115 

 
Length 

50.04 52.87 49.46 43 43 

Penalty 
214 352 190 142 128.41 

 
Penalty 

22 23 21 92 76.54 

Turns 
795 990 615 588 544.67 

 
Turns 

390 405 360 384 324.65 

             

Map 5 A* Dijkstra EGA APF HYBRID 
 

Map 6 A* Dijkstra EGA APF HYBRID 

Length 
77.91 90.6 69.91 56 56 

 
Length 

70.7 77.18 69.18 59 59 

Penalty 
31 18 28 92 82.76 

 
Penalty 

113 129 99 102 90.47 

Turns 
690 360 420 384 352 

 
Turns 

465 525 555 444 410.28 

             

Map 7 A* Dijkstra EGA APF HYBRID 
 

Map 8 A* Dijkstra EGA APF HYBRID 

Length 
202.21 238.74 199.87 164 164 

 
Length 

160.92 187.69 159.17 132 132 

Penalty 
146 143 143 137 125.1 

 
Penalty 

358 419 351 131 119 

Turns 
555 600 720 552 516.24 

 
Turns 

540 630 555 540 490.55 
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Figure 6 Comparison charts  of the average objective values for 8 environments 

 The results obtained from the popular algorithms that dominated the field of path 

planning such as A*, Dijkstra, EGA(enhanced GA) and  APF are judged against the proposed 

three-stage optimized model. In comparison with the average of other algorithms with the 

proposed method for different maps. 

 For better observation, the average of the results of other methods is compared with 

the proposed hybrid model results which is shown in Figure 7 that the improved qualified 

paths are generated by the method. 

 

 

Figure 7 Comparison of the average of the results of 4 methods vs TSOM-RPP 

8. Three Phase Path Refinement Technique (TPRT) 

 The restricted population size or limitation in the number of generations are directly 

influencing the overall computational cost. In a complex environment, the optimal path 

derived by employing the above two stages may not be highly qualified. In this sense, it may 

derive the path with artifacts that can be removed by applying the TPRT. This is highly 

supportive to reduce the energy consumption for the mobile robot. Because the energy 

consumption of the mobile robot is contributed by the length of the path and turnings of the 

path. TPRT addresses both of the said problems and refines the derived path to get a smooth 
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path with the reduced turning of the path. TPRT is implemented on the path which takes the 

raw path as input and generates the smooth path for the traversal of the mobile robot.  

8.1.  Algorithm for the TRPT 

Phase 1: 

1. Initialize smoothened_path list to starting node 

2. Set last_node as starting node 

3. While last_node is not the destination do, 

a. Initialize adjacent_nodes to nodes adjacent to the last_node 

b. Remove obstacles from adjacent_nodes 

c. Sort adjacent_nodes in ascending order based on the distance between the 

node and destination 

d. For (temp_node in adjacent_nodes), 

i. If temp_node is present in the raw_path, 

1. Add temp_node to the smoothened_path 

ii. Else, 

1. Check if the temp_node satisfies the following conditions. 

a. Temp_node should not be an obstacle 

b. Lines drawn parallel to the x-axis or y-axis passing 

through the temp_node must intersect with the raw_path 

c. The line drawn between the temp_node and intersection 

node should not have any obstacles 

d. The intersection node should not be already present in 

the smoothened_path 

2. If the temp_node satisfies the given condition, 

a. Add temp_node to smoothened_path 

b. Break iteration 

3. Else, 

a. If the intersection_node is already present in 

smoothened_path, 

i. Continue iteration 

b. If there are multiple intersecting nodes, 

i. Choose the intersecting node which is nearest to 

the destination 

c. Construct a straight path between the last_node and 

chosen intersection node. 

d. Add all the nodes from the straight path to 

smoothened_path 

e. Break iteration 

e. Set last_node as the last node of smoothened_path 
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Phase 2: 

4. To further reduce the artifacts during the previous process, follow the below steps. 

5. Initialize clean_path to starting node 

6. Set last_node to starting node 

7. While last_node is not the destination, do 

a. Draw lines parallel to the x-axis and y-axis passing through the last_node 

b. Find the nodes of intersection between the lines and smoothened_path 

c. Choose the node which is farthest from the last_node such that a line drawn 

between the chosen node and last_node does not pass through any obstacles 

and is not already present in clean_path 

d. If no nodes pass the above criteria, 

i. Add the node that comes after last_node in smoothened_path to 

final_path 

ii. Set last_node as the last node of clean_path 

iii. Continue iteration 

e. Construct a straight path between the chosen node and last_node 

f. Add all the nodes in the straight path to clean_path 

g. Set last_node as the last node of clean_path 

Phase 3: 

8. To further optimize the path, follow the below steps. 

9. Initialize final_path to starting node 

10. Set last_node to starting node 

11. While last_node is not the destination, do 

a. Draw diagonal lines passing through last_node. 

b. If either of the lines intersects with nodes in clean_path, such that there is no 

obstacle in a line between the intersection nodes and last_node 

i. Choose the intersection node which is farthest from the last_node 

ii. Construct a straight path between the intersection node and last_node 

iii. Add all nodes from the straight path to final_path 

c. Else, 

i. Add the next node from clean_path to final_path 

d. Set last_node as the last node of final_path 
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The TPRT algorithm is illustrated through the figures [Figure 8]. The first one is the raw 

path derived after two stages which is the input for the TPRT. If there are concave structures 

of obstacles in the map, phase 1 of the algorithm TPRT tends to create artifacts as shown in 

the second one. Phase 2 of the TPRT  removes the artifacts of the path which is shown in the 

3
rd

 figure. Phase 3 is used to shorten the path by taking a diagonal path where ever possible to 

reach the destination that is demonstrated in the 4
th

 figure of Figure 8.  

 The overall quality of the path is maintained without compromising the performance 

through this hybrid model. 

9.  Conclusion 

A model is proposed to determine the path for the mobile robot which hybridizes the APF 

and non-dominated Pareto analysis. In this path planning algorithm, while implementing the 

MOGA, length, number of turns that exist in the path, and deviation of the path from the 

previous direction. The generated path has undergone another technique called the TPRT to 

smoothen the path. The results obtained from the popular algorithms that dominated the field 

of path planning such as A*, Dijkstra, EGA(enhanced GA) and  APF are compared and 

analyzed.  From the study,  it is inferred that the proposed hybrid algorithm is producing 

better results for individual objective levels. In conclusion, the average percentage of 

improvement in objective length is 14.75%, the penalty calculated by deviation is 12.10%, 

and the in terms of the number of turns is 17.51%.  Considering the overall fitness value, the 

average percentage of improvement in fitness value is 14.79%. The TPRT is used to remove 

the turns on the derived path which will further increase the safety and energy efficiency of 

the mobile robot. 
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