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Abstract 

A topological space is generally described as a set of arbitrary elements (points) in which a concept of continuity 

is specified. Topological transformations preserve the neighborhood relations between mapped points and 

include translation, rotation, and rubber sheeting. A complete set of topological invariants allows us to recognize 

homeomorphism classes, which pertains to scenes of objects belonging to the same homeomorphism class. Given 

two scenes of geometric objects embedded in ℝ2, we can assess if they are topologically equivalent either by 

finding a topological transformation mapping one scene into the other or by checking whether all topological 

invariants are the same. 
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1. Introduction 

One way to describe the subject of Topology is to 

say that it is qualitative geometry. The idea is that if 

one geometric object can be continuously 

transformed into another, then the two objects are to 

be viewed as being topologically the same. For 

example, a circle and a square are topologically 

equivalent. Physically, a rubber band can be 

stretched into the form of a circle or a square, as well 

as many other shapes which are also viewed as being 

topologically equivalent. On the other hand, a figure 

eight curve formed by two circles touching at a point 

is to be regarded as topologically distinct from a 

circle or square. A qualitative property that 

distinguishes the circle from the figure eight is the 

number of connected pieces that remain when a 

single point is removed: When a point is removed 

from a circle what remains is still connected, a single 

arc, whereas for a figure eight if one removes the 

point of contact of its two circles, what remains is 

two separate arcs, two separate pieces. The term 

used to describe two geometric objects that are 

topologically equivalent is homeomorphic.  

 
Figure 1: Homomorphism Topology 

Thus, a circle and a square are homeomorphic. 

Concretely, if we place a circle C inside a square S 

with the same center point, then projecting the circle 

radially outward to the square defines a function 

𝑓: 𝐶 → 𝑆, and this function is continuous: small 

changes in x produce small changes in f (x). The 

function f has an inverse 𝑓−1: 𝑆 → 𝐶obtained by 

projecting the square radially inward to the circle, 

and this is continuous as well. One says that f is a 

homeomorphism between C and S. Our first goal 

will be to define exactly what the ‘geometric objects’ 

are that one studies in Topology. These are called 

topological spaces. 

2. Topological Spaces 

A subset O of ℝ is open if for each point x ɛ O 

there exists an interval (a, b) that contains x and is 

contained in O. A function 𝑓: ℝ → ℝ is continuous 

if for each open set O in  ℝ the inverse image 

𝑓−1(𝑂): {𝑥𝜀ℝ|𝑓(𝑥)𝜀𝑂}is also an open set. A 

topological space is a set X together with a collection 

O of subsets of X, called open sets, such that: 

• The union of any collection of sets in O is in 

O. 

• The intersection of any finite collection of 

sets in O is in O. 

•  Both𝜙and X are in O. 

The collection O of open sets is called a topology 

on X. Notice that the intersection of an infinite 

collection of open sets in ℝ need not be open. It is 

always possible to construct at least two topologies 

on every set X by choosing the collection O of open 

sets to be as large as possible or as small as possible: 

The collection O of all subsets of X defines a 

topology on X called the discrete topology. If we let 

O consist of just X itself and 𝜙, this defines a 

topology, the trivial topology. Thus, we have three 

different topologies on ℝ, the usual topology, the 

discrete topology, and the trivial topology. A subset 

A of a topological space X is closed if its 

complement X - A is open. 

3. Interior, Closure, and Boundary 

Consider an open disk D in the plane ℝ2 , 

consisting of all the points inside a circle C . We 

would like to assign precise meanings to certain 

intuitive statements like the following: 

• C is the boundary of the open disk D, and 

also of the closed disk 𝐷 ∪ 𝐶. 

• D is the interior of the closed disk 𝐷 ∪ 𝐶, 

and 𝐷 ∪ 𝐶 is the closure of the open disk D. 

The key distinction between points in the 

boundary of the disk and points in its interior is that 

for points in the boundary, every open set containing 

such a point also contains points inside the disk and 

points outside the disk, while each point in the 

interior of the disk lies in some open set entirely 

contained inside the disk. Given a subset A of a 

topological space X, then for each point x ɛ X exactly 

one of the following three possibilities holds: 

(i) There exists an open set O in X with x ɛ O 

⊂ A. 

(ii) There exists an open set O in X with x ɛ O 

⊂ X - A. 

(iii) Every open set O with x ɛ O meets both A 

and X - A. 

Points x such that (i) holds form a subset of A 

called the interior of A, written int(A). The points 
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where (ii) hold then form int (X - A). Points x where 

(iii) holds forma set called the boundary or frontier 

of A, written ∂𝐴. The points x where either (i) or (iii) 

hold are the points x such that every open set O 

containing x meets A. Such points are called limit 

points of A, and the set of these limit points is called 

the closure of A, written A. Note that A ⊂ A, so we 

have int(A) ⊂ A ⊂ A = int(A) ∪∂𝐴, this last union 

being a disjoint union. We will use the symbol ∐ to 

denote union of disjoint subsets when we want to 

emphasize the disjointness, so A = int(A) ∐ ∂𝐴 and 

X = int(A) ∐ ∂𝐴∐ int(X − A). 

Preposition 1: For every subset A ⊂ X the 

following statements hold: 

(a) int(A) is open. 

(b) A is closed. 

(c) A is open if and only if A = int(A). 

(d) A is closed if and only if A = A. 

Proof: (a) If x is a point in int(A) then there is an 

open set Ox with x ɛ Ox ⊂ A. We have Ox ⊂ int(A) 

since for each y ɛ Ox, Ox is an open set with y ɛ Ox 

⊂A so y ∈ int(A). It follows that int(A) = Sx Ox , the 

union as x ranges over all points of int(A). This is a 

union of open sets and hence open. 

(b) Since X = int(A) ∐ ∂𝐴  ∐ int(X - A), we have 

A as the complement of int(X −A), so A is closed, 

being the complement of an open set by part (a). 

(c) If A = int(A) then A is open by (a). 

Conversely, suppose A is open. Then every x ɛ A is 

in int(A) since we can take O = A in condition (1). 

Thus A ⊂ int(A). The opposite inclusion int(A) ⊂ A 

always holds, so A = int(A). 

(d) If A = A then A is closed by (b). Conversely, 

if A is closed then X - A is open, so each point of X 

- A is contained in an open set disjoint from A, 

namely the set X – A itself. This means that no point 

of X − A is a limit point of A, or in other words we 

have A ⊂ A. We always have A ⊂ A, so A = A. 

Proposition 2: If B is a collection of subsets of a 

set X satisfying (i) and (ii) then B is a basis for a 

topology on X. The open sets in this topology have 

to be exactly the unions of sets in B since B is a basis 

for this topology. 

Proof: Let O be the collection of subsets of X that 

are unions of sets in B. Obviously the union of any 

collection of sets in O is in O. To show the 

corresponding result for finite intersections it 

suffices by induction to show that O1∩O2 ɛ O if O1, 

O2 ɛ O. For each x ∈ O1 ∩O2 we can choose sets B1, 

B2 ɛ B with x ɛ B1 ⊂ O1 and x ɛ B2 ⊂O2. By (ii) there 

exists a set B3 ɛ B with x ɛ B3 ⊂ B1 ∩ B2 ⊂ O1 ∩ O2. 

The union of all such sets B3 as x ranges over O1 ∩ 

O2 is O1 ∩ O2, so O1 ∩ O2 ɛ O. Finally, X is in O by 

(1), and 𝜙 ɛ O since we can regard ∅ as the union of 

the empty collection of subsets of B.  

A neighborhood of a point x in a topological 

space X is any set A ⊂ X that contains an open set O 

containing x. 

4. Metric Spaces 

The topology on ℝ𝑛 is defined in terms of open 

balls, which in turn are defined in terms of distance 

between points. There are many other spaces whose 

topology can be defined in a similar way in terms of 

a suitable notion of distance between points in the 

space. A metric space on a set X is a function d:X × 

X→ℝ𝑛 such that 

• d(x, y) ≥0 for all 

𝑥, 𝑦𝜀𝑋 with d(x,x)=0 and d(x,y)>0 if x ≠

y. 

• d(x, y)=d(y, x) for all x,y ɛ X 

• d(x, z) ≤ d(x, y) + d(y, z) for all x,y,z ɛ X. 

Proposition 3:  The collection of all balls Br(x) 

for r > 0 and x ɛ X forms a basis for a topology on 

X. A topological space together with a metric that 

defines the topology in this way is called a metric 

space. 

Proof: First a preliminary observation: For a 

point y ɛ Br(x) the ball Bs(y) is contained in Br (x) if 

s ≤ r -d(x,y), since for z ɛ Bs(y) we have d(z,y) < s 

and hence d(z,x) ≤ d(z,y) + d(y,x) < s + d(x,y) ≤ r 

Now to show the condition to have a basis is 

satisfied, suppose we are given a point y ɛ 

Br1(x1)∩Br2(x2). Then the observation in the 

preceding paragraph implies that Bs(y) ⊂ Br1(x1) ∩ 

Br2 (x2) for any s ≤  min{r1 − d(x1,y), r2 - d(x2,y)}. 

Proposition 4: The metric topology on a subset 

A of a metric space X is the same as the subspace 

topology.  

Proof: Observe first that for a ball Br(x) in X, the 

intersection A ∩ Br(x) consists of all points in A of 

distance less than r from x, so this is a ball in A 

regarded as a metric space in itself. For a collection 

of such balls Br_(x_) we have 𝐴 ∩ (⋃ 𝐵𝑟𝛼(𝑥𝛼)𝛼 ) =

⋃ (𝐴 ∩ 𝐵𝑟𝛼(𝑥𝛼))𝛼 . The left side of this equation is a 
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typical open set in A with the subspace topology, and 

the right side is a typical open set in the metric 

topology, so the two topologies coincide. A subspace 

A ⊂ X whose subspace topology is the discrete 

topology is called a discrete subspace of X. This is 

equivalent to saying that for each point x ɛ A there is 

an open set in X whose intersection with A is just x. 

For example, Z is a discrete subspace of ℝ, but Q is 

not discrete. The sequence 1/2, 1/3, 1/4 ··· without 

its limit 0 is a discrete subspace of ℝ, but with 0 it is 

not discrete. For a subspace A ⊂ X, a subset of A 

which is open or closed in A need not be open or 

closed in X.   

Lemma 1: For an open set A ⊂ X, a subset B ⊂ 

A is open in the subspace topology on A if and only 

if B is open in X. This is also true when “open” is 

replaced by “closed” throughout the statement. 

Proof: If B ⊂ A is open in A, it has the form A ∩ 

O for some open set O in X. This intersection is open 

in X if A is open in X. Conversely, if B ⊂ A is open 

in X then A ∩ B = B is open in A. The argument for 

closed sets is just the same. 

Lemma 2: Given a space X, a subspace Y, and a 

subset A ⊂ Y, then the closure of A in the space Y is 

the intersection of the closure of A in X with Y. This 

amounts to saying that a point   y ɛ Y is a limit point 

of A in Y (i.e., using the subspace topology on Y) if 

and only if y is a limit point of A in X. 

Proof: For a point y ɛ Y to be a limit point of A 

in X means that every open set O in X that contains 

y meets A. Since A ⊂ Y, this is equivalent to O ∩ Y 

meeting A, or in other words, that every open set in 

Y containing y meets A. 

5. Continuity and Homeomorphisms 

Recall the definition: A function f :X→Y 

between topological spaces is continuous if f −1(O) is 

open in X for each open set O in Y. For brevity, 

continuous functions are sometimes called maps or 

mappings. 

Lemma 3: A function f :X→Y is continuous if 

and only if f −1(C) is closed in X for each closed set 

C in Y. 

Proof: An evident set-theory fact is that f−1(Y - 

A) = X - f −1(A) for each subset A of Y. Suppose now 

that f is continuous. Then for any closed set C ⊂ Y, 

we have Y - C open, hence the inverse image f−1(Y - 

C) = X - f−1(C) is open in X, so its complement f−1(C) 

is closed. Conversely, if the inverse image of every 

closed set is closed, then for O open in Y the 

complement Y - O is closed so f−1(Y - O) = X - f−1(O) 

is closed and thus f−1(O) is open, so f is continuous.  

Lemma 4: Given a function f :X→Y and a basis 

B for Y, then f is continuous if and only if f−1(B) is 

open in X for each B ɛ B. 

Proof: One direction is obvious since the sets in 

B are open. In the other direction, suppose   f−1(B) is 

open for each B ɛ B. Then any open set O in Y is a 

union ∪𝛼 𝐵𝛼of basis sets 𝐵𝛼, hence f−1(O) = 

f−1(∪𝛼 𝐵𝛼) = ∪𝛼 𝑓−1(𝐵𝛼) is open in X, being a union 

of the open sets f−1(B_).  

Lemma 5: If f :X→Y and g: Y→Z are 

continuous, then their composition 𝑔 ∘ 𝑓: 𝑋 → 𝑍is 

also continuous. 

Proof: This uses the easy set-theory fact that 

(g∘f)−1(A) = f−1(g−1(A)) for any A ⊂Z . Thus, if f and 

g are continuous and A is open in Z then g−1(A) is 

open in Y so f−1(g−1(A)) is open in X. This means g∘f 

is continuous.  

Lemma 6: If f :X→Y is continuous and A is a 

subspace of X, then the restriction 𝑓|𝐴of f to A is 

continuous as a function A→Y. 

Proof: For an open set O ⊂ Y we have (𝑓|𝐴)−1(O) 

= f−1(O) ∩ A, which is an open set in A since f−1(O) 

is open in X. A continuous map f :X→Y is a 

homeomorphism if it is one-to-one and onto, and its 

inverse function f−1: Y→X is also continuous. 

A continuous map f :X→Y is a homeomorphism 

if it is one-to-one and onto, and its inverse function 

f−1: Y→X is also continuous. 

6. Product Spaces 

Given two sets X and Y, their product is the set 

X ×Y = {(x,y)|x ɛ X and y ɛY }. For example, ℝ2 =

ℝ 𝑥 ℝ, and more generally ℝ𝑚𝑥ℝ𝑛 = ℝ𝑚+𝑛. If X 

and Y are topological spaces, we can define a 

topology on X × Y by saying that a basis consists of 

the subsets U × V as U ranges over open sets in X 

and V ranges over open sets in Y. The criterion for a 

collection of subsets to be a basis for a topology is 

satisfied since (U1 x V1) ∩ (U2 x V2) = (U1 ∩ U2) × 

(V1 ∩ V2). This is called the product topology on X 

x Y. The same topology could also be produced by 

taking the smaller basis consisting of products U x V 

where U ranges over a basis for the topology on X 
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and V ranges over a basis for the topology on Y. This 

is because (∪𝛼 𝑈𝛼) x (∪𝛽 𝑉𝛽) =∪𝛼,𝛽  𝑥 (𝑈𝛼  x V𝛽). 

For example, a basis for the product topology on 

ℝ x ℝconsists of the open rectangles (a1, b1) x (a2, 

b2). This is also a basis for the usual topology on ℝ2, 

the product topology coincides with the usual 

topology. More generally one can define the product 

X1 x …x Xn to consist of all ordered n-tuples (x1, … 

,xn) with xi ɛ Xi for each i. A basis for the product 

topology on X1 x ….x Xn consists of all products U1 

x…x Un as each Ui ranges over open sets in Xi, or 

just over a basis for the topology on Xi. Thus, Rn with 

its usual topology is also describable as the product 

of n copies of ℝ, with basis the open “boxes” (a1, b1) 

x …x (an, bn). 

The product S1 ×S1 is homeomorphic to a torus, 

say the torus T in ℝ3 obtained by taking a circle C in 

the yz-plane disjoint from the z-axis and rotating this 

circle about the z-axis. We can parametrize points on 

T by a pair of angles (𝜃1, 𝜃2) where 𝜃1 is the angle 

through which the yz-plane has been rotated and 𝜃2 

is the angle between the horizontal radial vector of C 

pointing away from the z-axis and the radial vector 

to a given point of C .  

 
Figure 2: Homeomorphic Product Space 

One can think of 𝜃1 and 𝜃2 as longitude and 

latitude on T. A basic open set U ×V in S1 ×S1 is a 

product of two open arcs, and this corresponds to an 

open curvilinear rectangle on T. 

Proposition 5: A function f: Z→X x Y is 

continuous if and only if its component functions f1: 

Z→X and f2: Z→Y are both continuous. 

Proof: We have f1 = p1f and f2 = p2f so f1 and f2 

are continuous if f is continuous. For the converse, 

note that f −1(U x V) = f1 −1 (U) ∩ f2 −1(V), so this will 

be open if U and V are open and f1 and f2 are 

continuous. 

7. Invariants for Relations Between 

Simple Lines 

To exploit all invariants for lines, in this section 

we will concentrate on specific topological 

invariants characterizing the relation between pairs 

of simple lines. For the case of non-void intersection 

between two simple lines, we are going to consider 

all connected intersection components. To find out 

all invariants, it is necessary to establish an order on 

the points belonging to the line, hence considering 

the line as an oriented feature. 

 
Figure 3: (a) 0-Dimensional Intersection with One 

Component, (b) One Dimensional Intersection with 

One Component, (c) 0-Dimensional Intersection 

with Two Components, and (d) 0-Dimensional 

Intersection with Three Components 

 
Figure 4: A Scene of Two Simple Lines with an 

Intersection Sequence S(L2) = (0, 1, 3, 2) 

The intersection sequence describes the order in 

which the various components of the intersection 

between two lines L1 and L2 occur. Under a 

topological transformation, the intersection 

sequence must be preserved. Following the line L1 

from its first point and assigning numeric labels to 

the intersections until the last point is reached, the 

intersection sequence is a sequence of numbers 

established traversing the line L2 and recording the 

labels that were previously assigned to L1. 

8. Conclusion 

It is recognized that topological inconsistencies 

need to be removed in order to perform spatial 

analysis. Checking the consistency is important not 

only for discovering digitizing errors in data sets, but 

primarily for the management of multiple 

representations of space. The general way to assess 

topological equivalence would be to find a bi-

continuous bijection between the two point-sets. The 

alternative is to show that topological invariants are 

preserved. The approach, which is adopted in the 

paper, implies as the basic step the definition of a set 

of topological invariants (the classifying invariant) 

that must satisfy two requirements: to be necessary 
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and to uniquely identify a topological equivalence 

class. The classifying invariant is a description of all 

topological properties of any two-dimensional scene 

of objects and constitutes the basis for defining 

topological primitives. 
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