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Abstract  

In this paper, we have analyzed a two-unit warm standby system with various types of failure and instruction. 

There are three types of failures that have been considered: operating unit or the warm standby unit failure, 

failure due to common error and the failure due to human error. There is repair faculty available for the repair 

of the failed unit. In case the repairman is unable to repair the failed unit, an expert repairman is called for the 

repair of the failed unit. Using semi-Markov process and regenerative point technique, various reliability 

measures have been derived. Also, the comparison analysis has been drawn graphically. 
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1. Introduction 

A lot of work has been done in the field of 

reliability and redundant systems. In this paper, we 

are extending the work in redundant systems by 

taking a two-unit identical system in warm standby 

with three types of failure. The three types of 

failure are operating unit failure or the warm 

standby unit failure, failure due to common error 

and the failure due to human error. There is a repair 

faculty available at all times, so that the system can 

be taken care of as soon as the failure occurs. Now, 

there is a possibility that repairman is unable to 

repair the system by himself. In such a case, expert 

repairman is called and expert repairman helps via 

instruction and if need be, he also repairs the 

system himself.  

In their analysis of a two-unit warm standby system 

with instructions at need, G.S. Mokaddis, Y.M. 

Ayed, and H.S. Al-Hajeri (2013) took into account 

two repairmen: an expert and an assistant. The 

assistant was only called in when the expert 

repairman was preoccupied with fixing a 

malfunctioning unit, as they regarded the main 

repair faculty to be skilled repairmen. The 

instructions for fixing the malfunctioning 

equipment may or may not be required by the 

assistant repairman, and various probabilities were 

taken into account. The implications of random 

replacement times were taken into account by G. 

Levitin, L. Xing, and Y. Dai (2015) when assessing 

and optimizing 1-out-of-N warm standby systems. 

When components fail to do a mission task within 

the allotted mission time, the system is said to have 

failed. They also examined the duration required to 

transition the unit from warm standby to 

operational. A stochastic model for a two-unit hot 

standby database system comprising an operational 

(main) unit and a hot standby unit was created by 

A. Manocha, G. Taneja, S. Singh, and R. 

Rishi (2019). The primary unit acted as the 

production unit and stayed in sync with the hot 

standby unit via the online transfer of archive redo 

logs. The primary unit's data was simultaneously 

saved in the hot standby unit. Various scenarios of 

the primary database failing were considered. In 

order to prevent data loss, a database administrator 

(DBA) randomly checked the standby unit to 

determine if any redo log files had been modified 

or created. The system that Lalji Munda and 

Gulshan Taneja (2023) examined consisted of three 

units: a warm standby, a cold standby, and an 

operating unit. They reasoned that when the main 

unit (operational) fails, the cold standby, when 

engaged, transforms to warm standby, and vice 

versa for warm standby. They computed a number 

of performance metrics using the Markov process 

and regeneration point technique. They also 

derived cut-off values for the failure rate, activation 

rate, revenue cost, and cost per repairman visit in 

order to ascertain the system's optimal profit. 

 

2. Description of model and Assumptions: 

i. System is made up of two identical units. One unit 

is operating and the other is kept as warm standby. 

ii. If there is a failure in one unit, the standby unit 

will be in operation automatically and the failed 

unit will go under repair.  

iii. The system is in failed state when both the units 

malfunction. 

iv. After the repair, the system acts like a new one. 

v. The time to failure for each unit is in exponential 

distribution and the repair time and instruction 

time are in arbitrary distribution. 

vi. All the random variables are mutually 

independent. 

 

3. Nomenclature 

P probability that the repairman repairs system 

without instructions 

q  probability that the repairman fails to repair 

system without instructions 

𝜆0 constant failure rate of the operative unit 

O    operative unit 

WS  warm standby 

𝜆1  constant failure rate of the warm standby unit 

𝜆2 constant failure rate of the system due to 

common cause failure 

𝜆3   constant failure rate of the system due to human 

error 

𝑔𝑎(𝑡) p.d.f. of repair time of failed unit by assistant 

repairman 

𝑔𝑒(𝑡)  p.d.f. of repair time of failed unit by expert 

repairman 

𝑔2(𝑡)p.d.f. of repair time of failed unit due to 

common error 

𝑔3(𝑡) p.d.f. of repair time of failed unit due to 

human error 

𝐺𝑎(𝑡) c.d.f. of repair time of failed unit by assistant 

repairman 

𝐺𝑒(𝑡)  c.d.f. of repair time of failed unit by expert 

repairman 

𝐺2(𝑡) c.d.f. of repair time of failed unit due to 

common error 

𝐺3(𝑡)  c.d.f. of repair time of failed unit due to 

human error 

Fuwi   failed unit waiting for repair while expert is 

giving instructions 

Fuwe   repair by the repairman is continued from 

the previous state while 

            instructions are still being given 

Fura  failed unit under repair of assistant 

Fure failed unit under repair of expert  

FuRa  failed unit under repair of assistant when 

repair is continued from the  
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          previous state 

FuRefailed unit under repair of expert when repair 

is continued from the  

           previous state 

Fuw  failed unit waiting for repair after getting 

instructions 

 

 
Fig. 1 (Transition Diagram) 

 

4. Transition probabilities 

The transition probabilities are: 

ⅆ𝑄01(𝑡) =  (𝜆0 + 𝜆1)𝑒−(𝜆0+𝜆1+𝜆2+𝜆3)𝑡ⅆ𝑡 
ⅆ𝑄02(𝑡) =  𝜆2𝑒−(𝜆0+𝜆1+𝜆2+𝜆3)𝑡ⅆ𝑡 
ⅆ𝑄03(𝑡) =  𝜆3𝑒−(𝜆0+𝜆1+𝜆2+𝜆3)𝑡ⅆ𝑡 

ⅆ𝑄12(𝑡) =  𝜆2𝑒−(𝜆0+𝜆2+2𝜆3)𝑡ⅆ𝑡 
ⅆ𝑄13(𝑡) =  𝜆3𝑒−(𝜆0+𝜆2+2𝜆3)𝑡ⅆ𝑡 
ⅆ𝑄14(𝑡) =  𝜆3𝑒−(𝜆0+𝜆2+2𝜆3)𝑡ⅆ𝑡 
ⅆ𝑄15(𝑡) =  𝜆0𝑒−(𝜆0+𝜆2+2𝜆3)𝑡ⅆ𝑡 

ⅆ𝑄18
(5)

(𝑡) = (𝜆0𝑒−(𝜆0+𝜆2+2𝜆3)𝑡©𝜆3𝑒−𝜆3𝑡)ⅆ𝑡

=  
𝜆0𝜆3

𝜆0 + 𝜆2 + 𝜆3
[𝑒−𝜆3𝑡

− 𝑒−(𝜆0+𝜆2+2𝜆3)𝑡]ⅆ𝑡 

ⅆ𝑄20(𝑡) =  𝑔2(𝑡)ⅆ𝑡 
ⅆ𝑄30(𝑡) =  𝑔3(𝑡)ⅆ𝑡 

ⅆ𝑄40(𝑡) =  𝑝𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝑔𝑎(𝑡)ⅆ𝑡 

ⅆ𝑄42(𝑡) =  𝜆2𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑎(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 

ⅆ𝑄43(𝑡) =  𝜆3𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑎(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 
ⅆ𝑄46(𝑡) =  𝑞𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝑔𝑎(𝑡)ⅆ𝑡 

ⅆ𝑄47(𝑡) =  𝜆0𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑎(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 

ⅆ𝑄41
(7)(𝑡) =  (𝜆0𝑒−(𝜆0+𝜆2+𝜆3)𝑡©𝑝)𝑔𝑎(𝑡)ⅆ𝑡

=  
𝑝𝜆0

𝜆0 + 𝜆2 + 𝜆3
[1

− 𝑒−(𝜆0+𝜆2+𝜆3)𝑡]𝑔𝑎(𝑡)ⅆ𝑡 

ⅆ𝑄4,10
(7) (𝑡) =  (𝜆0𝑒−(𝜆0+𝜆2+𝜆3)𝑡©𝑝)𝑔𝑎(𝑡)ⅆ𝑡

=  
𝑞𝜆0

𝜆0 + 𝜆2 + 𝜆3
[1

− 𝑒−(𝜆0+𝜆2+𝜆3)𝑡]𝑔𝑎(𝑡)ⅆ𝑡 

ⅆ𝑄60(𝑡) =  𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝑔𝑒(𝑡)ⅆ𝑡 

ⅆ𝑄62(𝑡) =  𝜆2𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 

ⅆ𝑄63(𝑡) =  𝜆3𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 

ⅆ𝑄69(𝑡) =  𝜆3𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡 

ⅆ𝑄61
(9)(𝑡) =  (𝜆0𝑒−(𝜆0+𝜆2+𝜆3)𝑡©1)𝑔𝑒(𝑡)ⅆ𝑡

=  
𝜆0

𝜆0 + 𝜆2 + 𝜆3
[1

− 𝑒−(𝜆0+𝜆2+𝜆3)𝑡]𝑔𝑒(𝑡)ⅆ𝑡 

ⅆ𝑄81(𝑡) =  𝑝𝑔𝑎(𝑡)ⅆ𝑡 
ⅆ𝑄8,10(𝑡) =  𝑞𝑔𝑎(𝑡)ⅆ𝑡 
ⅆ𝑄10,1(𝑡) =  𝑔𝑒(𝑡)ⅆ𝑡                                                                                          

The non-zero elements 𝑝𝑖𝑗 are as follows: 
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𝑝01 =  
𝜆0+𝜆1

𝜆0+𝜆1+𝜆2+𝜆3
,  𝑝02 =  

𝜆2

𝜆0+𝜆1+𝜆2+𝜆3
,  𝑝03 =

 
𝜆3

𝜆0+𝜆1+𝜆2+𝜆3
,  

 𝑝12 =  
𝜆2

𝜆0+𝜆2+2𝜆3
,  𝑝13 =  

𝜆3

𝜆0+𝜆2+2𝜆3
,  𝑝14 =

 
𝜆3

𝜆0+𝜆2+2𝜆3
,  𝑝15 =  

𝜆0

𝜆0+𝜆2+2𝜆3
, 𝑝18

(5)
=

𝜆0

𝜆0+𝜆2+2𝜆3
, 

𝑝20 =  𝑝30 = 1, 𝑝40 =  𝑝𝑔𝑎
∗ (𝜆0 + 𝜆2 + 𝜆3), 𝑝42 =

 
𝜆2

𝜆0+𝜆2+𝜆3
[1 − 𝑔𝑎

∗ (𝜆0 + 𝜆2 + 𝜆3)],  

𝑝43 =  
𝜆3

𝜆0+𝜆2+𝜆3
[1 − 𝑔𝑎

∗ (𝜆0 + 𝜆2 + 𝜆3)], 𝑝46 =

 𝑞𝑔𝑎
∗ (𝜆0 + 𝜆2 + 𝜆3),  

𝑝47 =  
𝜆0

𝜆0+𝜆2+𝜆3
[1 − 𝑔𝑎

∗ (𝜆0 + 𝜆2 + 𝜆3)], 𝑝41
(7)

=

𝑝𝜆0

𝜆0+𝜆2+𝜆3
[1 − 𝑔𝑎

∗ (𝜆0 + 𝜆2 + 𝜆3)],  

𝑝4,10
(7)

=
𝑞𝜆0

𝜆0+𝜆2+𝜆3
[1 − 𝑔𝑎

∗ (𝜆0 + 𝜆2 + 𝜆3)] ,  

𝑝60 =  𝑔𝑒
∗(𝜆0 + 𝜆2 + 𝜆3), 𝑝62 =  

𝜆2

𝜆0+𝜆2+𝜆3
[1 −

𝑔𝑒
∗(𝜆0 + 𝜆2 + 𝜆3)],  

𝑝63 =  
𝜆3

𝜆0+𝜆2+𝜆3
[1 − 𝑔𝑒

∗(𝜆0 + 𝜆2 + 𝜆3)], 𝑝69 =

 
𝜆0

𝜆0+𝜆2+𝜆3
[1 − 𝑔𝑒

∗(𝜆0 + 𝜆2 + 𝜆3)],  

𝑝61
(9)

=  
𝜆0

𝜆0+𝜆2+𝜆3
[1 − 𝑔𝑒

∗(𝜆0 + 𝜆2 + 𝜆3)], 𝑝81 =

 𝑝, 𝑝8,10 =  𝑞, 𝑝10,1 =  1                         

From the transition probabilities, it can be verified 

that  

𝑝01 + 𝑝02 + 𝑝03 =  1  

𝑝12 + 𝑝13 + 𝑝14 + 𝑝15 =  𝑝12 + 𝑝13 + 𝑝14 + 𝑝18
(5)

=  1  
𝑝20 =  𝑝30 =  1  
𝑝40 + 𝑝42 + 𝑝43 + 𝑝46 + 𝑝47

=  𝑝40 + 𝑝42 + 𝑝43 + 𝑝46 + 𝑝41
(7)

+ 𝑝4,10
(7)

=  1  

𝑝60 + 𝑝62 + 𝑝63 + 𝑝69 =  𝑝60 + 𝑝62 + 𝑝63 + 𝑝61
(9)

=  1  
𝑝81 + 𝑝8,10 =  𝑝 + 𝑞 =  1  ,    𝑝10,1 = 1                            

 

5. Mean Sojourn Time 

If T denotes mean sojourn time in state 0, then  

𝜇0 =  ∫ 𝑃(𝑇 > 𝑡)ⅆ𝑡 =  
1

𝜆0+𝜆1+𝜆2+𝜆3
 , 𝜇1 =

 
1

𝜆0+𝜆2+2𝜆3
 , 𝜇2 =  ∫ 𝐺2(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡

∞

0
, 𝜇3 =  ∫ 𝐺3(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡

∞

0
, 

𝜇4 =  
1−𝑔𝑎

∗ (𝜆0+𝜆2+𝜆3)

𝜆0+𝜆2+𝜆3
 , 𝜇6 =  

1−𝑔𝑒
∗(𝜆0+𝜆2+𝜆3)

𝜆0+𝜆2+𝜆3
 ,

 𝜇8 =  ∫ 𝐺𝑎(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡
∞

0
, 𝜇10 =  ∫ 𝐺𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅ⅆ𝑡

∞

0
  

The unconditional mean time taken by the system 

to transit to any regenerative state i when it is 

counted from the epoch of entrance into that state 

is, mathematically, stated as  

𝑚𝑖𝑗 =  ∫ 𝑡ⅆ𝑄𝑖𝑗(𝑡)
∞

0
=  −

𝑑

𝑑𝑠
𝑞𝑖𝑗

∗ |𝑠=0                              

∴ 𝑚01 + 𝑚02 + 𝑚03 =  𝜇0 
𝑚12 + 𝑚13 + 𝑚14 + 𝑚15 =  𝜇1  

𝑚40 + 𝑚42 + 𝑚43 + 𝑚46 + 𝑚47 

=  𝑚40 + 𝑚42 + 𝑚43 + 𝑚46

+ 𝑚41
(7)

+ 𝑚4,10
(7)

=  𝜇4 

𝑚60 + 𝑚62 + 𝑚63 + 𝑚69

=  𝑚60 + 𝑚62 + 𝑚63 + 𝑚61
(9)

=  𝜇6 

𝑚12 + 𝑚13 + 𝑚14 + 𝑚18
(5)

=  𝑘1 

 

6. Mean time to system failure 

To determine the MTSF of the system, we regard 

the failed states of the system as absorbing. By 

probabilistic arguments, we have  

𝜙0(𝑡) =  𝑄02(𝑡) + 𝑄03(𝑡) + 𝑄01(𝑡)Ⓢ 𝜙1(𝑡) 
𝜙1(𝑡) =  𝑄12(𝑡) + 𝑄13(𝑡) + 𝑄15(𝑡)

+ 𝑄14(𝑡) Ⓢ 𝜙4(𝑡) 
𝜙4(𝑡) =  𝑄42(𝑡) + 𝑄43(𝑡) + 𝑄47(𝑡)

+ 𝑄40(𝑡) Ⓢ 𝜙0(𝑡)

+ 𝑄46(𝑡) Ⓢ 𝜙6(𝑡) 

𝜙6(𝑡) =  𝑄62(𝑡) + 𝑄63(𝑡) + 𝑄69(𝑡) + 𝑄60(𝑡) Ⓢ
 𝜙0(𝑡)                            

Now the MTSF, given that the system started at the 

beginning of state 0 is  

𝑇0 =  𝑙𝑖𝑚
𝑠→0

1 − 𝜙0
∗∗(𝑠)

𝑠

=  
𝜇0+𝑃01{𝜇1 + 𝑃14[𝜇4 + 𝑃46𝜇6]}

1 − 𝑝01𝑝14(𝑝40 + 𝑝46𝑝60)
 

 

7. Availability Analysis 

𝑀𝑖(𝑡) denotes the probability that the system 

starting in up regenerative state is up at time t 

without passing through any regenerative state. 

Thus, we have  

𝑀0(𝑡) =  𝑒−(𝜆0+𝜆1+𝜆2+𝜆3)𝑡, 𝑀1(𝑡) =

 𝑒−(𝜆0+𝜆2+2𝜆3)𝑡 , 𝑀4(𝑡) =  𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑎(𝑡)̅̅ ̅̅ ̅̅ ̅  

𝑀6(𝑡) =  𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅       
Taking Laplace transform of the above equations 

and solving them for 𝑠 → 0, we get 

𝑀0
∗(0) =  𝜇0 , 𝑀1

∗(0) =  𝜇1 , 𝑀4
∗(0) =  𝜇4 , 

𝑀6
∗(0) =  𝜇6                                   

Using the arguments of the theory of regenerative 

processes, the availability 𝐴𝑖(𝑡) is seen to satisfy  

𝐴0(𝑡) =  𝑀0(𝑡) + 𝑞01(𝑡)©𝐴1(𝑡)
+ 𝑞02(𝑡)©𝐴2(𝑡)
+ 𝑞03(𝑡)©𝐴3(𝑡) 

𝐴1(𝑡) =  𝑀1(𝑡) + 𝑞12(𝑡)©𝐴2(𝑡) + 𝑞13(𝑡)©𝐴3(𝑡)
+ 𝑞14(𝑡)©𝐴4(𝑡)

+ 𝑞18
(5)(𝑡)©𝐴8(𝑡)  

𝐴2(𝑡) =  𝑞20(𝑡)©𝐴0(𝑡) 
𝐴3(𝑡) =  𝑞30(𝑡)©𝐴0(𝑡) 
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𝐴4(𝑡) =  𝑀4(𝑡) + 𝑞40(𝑡)©𝐴0(𝑡)
+ 𝑞42(𝑡)©𝐴2(𝑡)
+ 𝑞43(𝑡)©𝐴3(𝑡)
+ 𝑞46(𝑡)©𝐴6(𝑡)

+ 𝑞41
(7)

(𝑡)©𝐴1(𝑡)

+ 𝑞4,10
(7) (𝑡)©𝐴10(𝑡)  

𝐴6(𝑡) =  𝑀6(𝑡) + 𝑞60(𝑡)©𝐴0(𝑡)
+ 𝑞62(𝑡)©𝐴2(𝑡)
+ 𝑞63(𝑡)©𝐴3(𝑡)

+ 𝑞61
(9)

(𝑡)©𝐴1(𝑡)  
𝐴8(𝑡) =  𝑞81(𝑡)©𝐴1(𝑡) + 𝑞8,10(𝑡)©𝐴10(𝑡)  
𝐴10(𝑡) =  𝑞10,1(𝑡)©𝐴1(𝑡)                                                    

The steady state availability of the system is given 

by 𝐴0 =  lim
𝑠→0

𝑠𝐴0
∗ (𝑠) = 

𝑁1

𝐷1
                                                  

Where 𝑁1 =  𝜇0 [𝑝14𝑝46𝑝81 −

𝑝14𝑝46𝑝61
(9)

−𝑝14𝑝4,10
(7)

+ 𝑝18
(5)

𝑝8,10] + 𝑝01[𝜇1 +

𝑝14{𝜇4 + 𝑝46𝜇6}] 

and 𝐷1 =  𝜇0 [1 − 𝑝18
(5)

− 𝑝14 {𝑝41
(7)

+ 𝑝4,10
(7)

+

𝑝46𝑝61
(9)

}] + 𝑝01𝜉1 + 𝑝01[𝑝12𝜇2 + 𝑝13𝜇3 +

𝑝14{𝑝42𝜇2 + 𝑝43𝜇3 + 𝑝46(𝑝62𝜇2 + 𝑝63𝜇3)}] +
𝑝02𝜇2 + 𝑝43𝜇3 + 𝑝46(𝑝62𝜇2 + 𝑝63𝜇3) +

(𝑝02𝜇2 + 𝑝03𝜇3) [1 − 𝑝18
(5)

− 𝑝14 {𝑝41
(7)

+ 𝑝4,10
(7)

+

𝑝46𝑝61
(9)

}] + 𝑝01 [𝑝14(𝜉2 + 𝑝46𝜉3) + 𝑝18
(5)

𝜇8 +

(𝑝14𝑝4,10
(7)

+ 𝑝18
(5)

𝑝8,10) 𝜇10]           

 

8. Busy period analysis 

Busy period analysis of the assistant repairman: 

Using probabilistic arguments, we have 

𝐵0
𝑎(𝑡) =  𝑞01(𝑡)©𝐵1

𝑎(𝑡) + 𝑞02(𝑡)©𝐵2
𝑎(𝑡)

+ 𝑞03(𝑡)©𝐵3
𝑎(𝑡) 

𝐵1
𝑎(𝑡) =  𝑞12(𝑡)©𝐵2

𝑎(𝑡) + 𝑞13(𝑡)©𝐵3
𝑎(𝑡)

+ 𝑞14(𝑡)©𝐵4
𝑎(𝑡)

+ 𝑞18
(5)(𝑡)©𝐵8

𝑎(𝑡)  
𝐵2

𝑎(𝑡) =  𝑞20(𝑡)©𝐵0
𝑎(𝑡) 

𝐵3
𝑎(𝑡) =  𝑞30(𝑡)©𝐵0

𝑎(𝑡) 
𝐵4

𝑎(𝑡) =  𝑊4(𝑡) + 𝑞40(𝑡)©𝐵0
𝑎(𝑡)

+ 𝑞41
(7)(𝑡)©𝐵1

𝑎(𝑡)

+ 𝑞42(𝑡)©𝐵2
𝑎(𝑡)

+ 𝑞43(𝑡)©𝐵3
𝑎(𝑡)

+ 𝑞46(𝑡)©𝐵6
𝑎(𝑡)

+ 𝑞4,10
(7) (𝑡)©𝐵10

𝑎 (𝑡)  

𝐵6
𝑎(𝑡) =  𝑞60(𝑡)©𝐵0

𝑎(𝑡) + 𝑞61
(9)(𝑡)©𝐵1

𝑎(𝑡)

+ 𝑞62(𝑡)©𝐵2
𝑎(𝑡)

+ 𝑞63(𝑡)©𝐵3
𝑎(𝑡)  

𝐵8
𝑎(𝑡) =  𝑊8(𝑡) + 𝑞81(𝑡)©𝐵1

𝑎(𝑡)
+ 𝑞8,10(𝑡)©𝐵10

𝑎 (𝑡) 
𝐵10

𝑎 (𝑡) =  𝑞10,1(𝑡)©𝐵1
𝑎(𝑡)                                   

Where 𝑊4(𝑡) =  
1

𝜆0+𝜆2+𝜆3
[𝜆0 + (𝜆2 +

𝜆3)𝑒−(𝜆0+𝜆2+𝜆3)𝑡]𝐺𝑎(𝑡)̅̅ ̅̅ ̅̅ ̅  and  𝑊8(𝑡) =  𝐺𝑎(𝑡)̅̅ ̅̅ ̅̅ ̅  

Taking Laplace transform of the above equations 

and taking 𝑠 → 0, we will get 

𝑊4
∗(0) =  𝜉2 , 𝑊8

∗(0) =  𝜇8           

In steady-state solution, the total fraction of time 

under which system is under repair of assistant 

repairman is given by 𝐵0
𝑎 =  lim

𝑠→0
𝑠 𝐵0

𝑎∗
=  

𝑁2

𝐷1
    

Where 𝑁2 =  𝑝01 (𝑝14𝜉2 + 𝑝18
(5)

𝜇8) and 𝐷1 is same 

as above.  

 

Busy period analysis of the expert repairman: 

Using probabilistic arguments, we have 

𝐵0
𝑒(𝑡) =  𝑞01(𝑡)©𝐵1

𝑒(𝑡) + 𝑞02(𝑡)©𝐵2
𝑒(𝑡)

+ 𝑞03(𝑡)©𝐵3
𝑒(𝑡) 

𝐵1
𝑒(𝑡) =  𝑊1(𝑡) + 𝑞12(𝑡)©𝐵2

𝑒(𝑡)
+ 𝑞13(𝑡)©𝐵3

𝑒(𝑡)
+ 𝑞14(𝑡)©𝐵4

𝑒(𝑡)

+ 𝑞18
(5)

(𝑡)©𝐵8
𝑒(𝑡)  

𝐵2
𝑒(𝑡) =  𝑊2(𝑡) + 𝑞20(𝑡)©𝐵0

𝑒(𝑡) 
𝐵3

𝑒(𝑡) =  𝑊3(𝑡) + 𝑞30(𝑡)©𝐵0
𝑒(𝑡) 

𝐵4
𝑒(𝑡) =  𝑞40(𝑡)©𝐵0

𝑒(𝑡) + 𝑞41
(7)(𝑡)©𝐵1

𝑒(𝑡)

+ 𝑞42(𝑡)©𝐵2
𝑒(𝑡)

+ 𝑞43(𝑡)©𝐵3
𝑒(𝑡)

+ 𝑞46(𝑡)©𝐵6
𝑒(𝑡)

+ 𝑞4,10
(7)

(𝑡)©𝐵10
𝑒 (𝑡)  

𝐵6
𝑒(𝑡) =  𝑊6(𝑡) + 𝑞60(𝑡)©𝐵0

𝑒(𝑡)

+ 𝑞61
(9)(𝑡)©𝐵1

𝑒(𝑡)

+ 𝑞62(𝑡)©𝐵2
𝑒(𝑡)

+ 𝑞63(𝑡)©𝐵3
𝑒(𝑡)  

𝐵8
𝑒(𝑡) =  𝑞81(𝑡)©𝐵1

𝑒(𝑡) + 𝑞8,10(𝑡)©𝐵10
𝑒 (𝑡) 

𝐵10
𝑒 (𝑡) =  𝑊10(𝑡) + 𝑞10,1(𝑡)©𝐵1

𝑒(𝑡)                   

Where 𝑊1(𝑡) =  𝑒−(𝜆0+𝜆2+2𝜆3)𝑡 +

[𝜆3𝑒−(𝜆0+𝜆2+2𝜆3)𝑡©1], 𝑊2(𝑡) =  𝐺2(𝑡)̅̅ ̅̅ ̅̅ ̅ , 𝑊3(𝑡) =

 𝐺3(𝑡)̅̅ ̅̅ ̅̅ ̅ , 

𝑊6(𝑡) =  𝑒−(𝜆0+𝜆2+𝜆3)𝑡𝐺𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅ +

[𝜆0𝑒−(𝜆0+𝜆2+𝜆3)𝑡©1]𝐺𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅ , 𝑊10(𝑡) =  𝐺𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅              
Taking Laplace transform of the above equations 

and taking 𝑠 → 0, we will get 

𝑊1
∗(0) =  𝜉1 , 𝑊2

∗(0) =  𝜇2,  𝑊3
∗(0) =  𝜇3,  

𝑊6
∗(0) =  𝜉3,  𝑊10

∗ (0) =  𝜇10            

In steady-state solution, the total fraction of time 

for which expert repairman is busy is given by 

𝐵0
𝑒 =  lim

𝑠→0
𝑠 𝐵0

𝑒∗
=  

𝑁3

𝐷1
            

Where 𝑁3 =  𝑝01[𝜉1 + 𝑝12𝜇2 + 𝑝13𝜇3 +
𝑝14{𝑝42𝜇2 + 𝑝43𝜇3 + 𝑝46(𝑝62𝜇2 + 𝑝63𝜇3)}] +

(𝑝02𝜇2 + 𝑝03𝜇3) [1 − 𝑝14𝑝41
(7)

− 𝑝14𝑝4,10
(7)

−

𝑝18
(5)

− 𝑝14𝑝46𝑝61
(9)

] + 𝑝01𝑝14𝑝46𝜉3 +

𝑝01𝜇10 (𝑝14𝑝4,10
(7)

+ 𝑝18
(5)

𝑝8,10)             

And 𝐷1 is same as above. 
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9. Expected number of visits by expert 

repairman 

Using probabilistic arguments, we have the 

following relations for expert visits i.e. 𝑉𝑖(𝑡): 

𝑉0(𝑡) =  𝑄01(𝑡)Ⓢ [1 + 𝑉1(𝑡)]

+ 𝑄02(𝑡)Ⓢ [1 + 𝑉2(𝑡)]

+ 𝑄03(𝑡)Ⓢ [1 + 𝑉3(𝑡)] 

𝑉1(𝑡) =  𝑄12(𝑡)Ⓢ 𝑉2(𝑡) + 𝑄13(𝑡)Ⓢ 𝑉3(𝑡)

+ 𝑄14(𝑡)Ⓢ 𝑉4(𝑡)

+ 𝑄18
(5)(𝑡)Ⓢ 𝑉8(𝑡)  

𝑉2(𝑡) =  𝑄20(𝑡)Ⓢ 𝑉0(𝑡) 

𝑉3(𝑡) =  𝑄30(𝑡)Ⓢ 𝑉0(𝑡) 

𝑉4(𝑡) =  𝑄40(𝑡)Ⓢ 𝑉0(𝑡) + 𝑄41
(7)

(𝑡)Ⓢ [1 + 𝑉1(𝑡)]

+ 𝑄42(𝑡)Ⓢ [1 + 𝑉2(𝑡)]

+ 𝑄43(𝑡)Ⓢ [1 + 𝑉3(𝑡)]

+ 𝑄46(𝑡)Ⓢ [1 + 𝑉6(𝑡)]

+ 𝑄4,10
(7) (𝑡)Ⓢ [1 + 𝑉10(𝑡)]  

𝑉6(𝑡) =  𝑄60(𝑡)Ⓢ [1 + 𝑉0(𝑡)] + 𝑄61
(9)(𝑡)Ⓢ𝑉1(𝑡)

+ 𝑄62(𝑡)Ⓢ 𝑉2(𝑡)

+ 𝑄63(𝑡)Ⓢ 𝑉3(𝑡) 

𝑉8(𝑡) =  𝑄81(𝑡)Ⓢ [1 + 𝑉1(𝑡)] + 𝑄8,10(𝑡)Ⓢ [1

+ 𝑉10(𝑡)] 

𝑉10(𝑡) =  𝑄10,1(𝑡)Ⓢ 𝑉1(𝑡)   

In steady-state, the number of visits per unit time is 

given by taking 𝑠 → 0 and 𝑡 → ∞ 

𝑉0 =  lim
𝑡→∞

𝑉0(𝑡)

𝑡
=  𝑙𝑖𝑚

𝑠→∞
[𝑠𝑉0

∗∗(𝑠)] =  
𝑁4

𝐷1
   

Where 𝑁4 =  1 − 𝑝14 (𝑝41
(7)

+ 𝑝4,10
(7)

+ 𝑝46𝑝61
(9)

) −

𝑝18
(5)

− 𝑝01𝑝14𝑝40 + 𝑝01 [𝑝18
(5)

+ 𝑝14 + 𝑝14𝑝46𝑝60]                      

And 𝐷1 is same as above. 

 

10. Cost-Benefit analysis 

The expected total profit in steady state is given by 

𝑃2 =  𝐶0𝐴0 − 𝐶1𝐵0
𝑎 − 𝐶2𝐵0

𝑒 − 𝐶3𝑉0             

Where 𝐶0 is total revenue per unit time of the 

system. 

            𝐶1 is cost per unit time for which the 

assistant repairman is busy. 

            𝐶2 is cost per unit time for which the expert 

repairman is busy. 

            𝐶3 is cost per visit of the expert repairman. 

 

11. Graphical Analysis 

 

 
FAILURE RATE (𝝰𝟏) 

 𝛼1 = 0.06 

 𝛼1 = 0.05 

 𝛼1 = 0.04 

 

𝛼2 = 0.06, 𝜆2 = 0.05, θ = 0.02 

η = 0.03, p = 0.7, q = 0.3,  𝜌1 =  𝜌2 

= 0.5 



Study Of Two-Unit Warm Standby System With Different Failure Modes And Instructions                          Section A-Research Paper 

 

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4599-4607            4605 

Fig. 2: AVAILABILITY VS. FAILURE RATE (𝛌𝟏) FOR DIFFERENT VALUES OF REPAIR RATE 

(𝜶𝟏)

 
REPAIR RATE (𝜶𝟏) 

Fig. 3: MTSF Vs. REPAIR RATE (𝜶𝟏) FOR DIFFERENT VALUES OF FAILURE RATE (𝝀𝟐) AND 

CORRELATION CO-EFFICIENT  (𝝆𝟏) 

 

 
CORRELATION CO-EFFICIENT (𝝆𝟏) 

Fig. 4: MTSF Vs. CORRELATION CO-EFFICIENT (𝝆𝟏) FOR DIFFERENT VALUES OF 𝝆𝟐 

 𝜆2= 0.015, 𝜌1 = 0.45 

 𝜆2= 0.015, 𝜌1 = 0.50 

 𝜆2= 0.025, 𝜌1 = 0.45 

 𝜆2= 0.025, 𝜌1 = 0.50 

 

 𝜌2 = 0.4 

 𝜌2 = 0.5 

 𝜌2 = 0.7 

𝜆1 = 0.005, 𝛼2 = 0.05, θ = 0.02 

η = 0.03, p = 0.7, q = 0.3, 𝜌2= 0.5 

 

𝜆1 = 𝜆2 = 𝛼1 = 𝛼2 = 0.05, 

θ = 0.02, η = 0.03, p = 0.7, q = 0.3 
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REPAIR RATE (𝜶𝟏) 

Fig. 5: PROFIT Vs. REPAIR RATE (𝜶𝟏) FOR DIFFERENT VALUES OF FAILURE RATE (𝝀𝟐) 

AND CORRELATION CO-EFFICIENT  (𝝆𝟏) 

 

12. Conclusion 

Fig. 2 shows that the behavior of availability with 

respect to failure rate (𝜆1). It gets decrease with 

increase in the values of failure rate. 

Fig. 3 shows the behavior of MTSF with respect to 

repair rate (𝛼1) for different values of failure rate 

(𝜆2) and correlation coefficient (𝜌1). It gets 

increases with increase in the values of repair rate 

(𝛼1). It is lower for higher values of failure rate (𝜆2) 

but it is higher for higher values of correlation 

coefficient (𝜌1). 

Fig. 4 reveals the pattern of MTSF with respect to 

correlation coefficient (𝜌1) for different values of 

(𝜌2). It is observed that the MTSF gets increase 

with increase in the values of correlation coefficient 

(𝜌1) and it is higher for higher values of (𝜌2) 

Fig. 5 reveals the pattern of the profit with respect 

to repair rate (𝛼1) for different values of failure rate 

(𝜆2) and correlation coefficient (𝜌1). It is clear from 

the graph that the profit increases with increase in 

the value of repair rate (𝛼1) and it is lower for 

higher value of repair rate (𝛼1) but higher for the 

higher values of correlation coefficient (𝜌1). 
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