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Abstract: 

Carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that can produce robust and durable 

films for a variety of uses as well as control the rheology and viscosity of aqueous systems. Initially, CMC 

was introduced as a substitute for starch and natural gums but frequently CMC emerged as a promising 

derivative with characteristic surface properties for various advanced applications. The use of this cellulose 

derivative is thus widespread in the production of paper, the processing of detergents, textiles, protective 

coatings and drilling fluids. The food, drug, and cosmetic sectors all frequently employ the refined variety, 

commonly known as cellulose gum. Currently, CMCs are also used in biomedical engineering, as diverse 

conductive agents in the textile, pharmaceutical, and food industries. Moreover, CMCs are effectively used in 

wastewater treatment to remove heavy metal contaminants, radionuclides, dyes, etc. which is also an emerging 

area of research. Additionally, several hybrid materials including a particular variety of super-absorbents based 

on CMC has been reported and there is still a great opportunities that more will be created in the future .Based 

on these significant updates, this review covers advancement in CMC applications with major focus on food 

industry and wastewater treatment. 
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Introduction 

CMC is an anhydro-glucose linear polysaccharide. 

Through -1,4-glycosidic bonds, the repeating units 

are joined. At the molecular level, the only 

significant distinction between CMC and cellulose 

is the presence of a few anionic carboxymethyl 

groups (i.e., -CH2COOH) in the CMC structure, 

which take the place of some hydroxyl groups that 

were present in the original cellulose structure. 

1918 saw the invention of CMC in Germany and 

introduced as a substitute for gelatin [1]. However, 

the discovery of commercial polymeric materials 

was promoted on a large scale in Germany in the 

early 1920s [2]. 

 

Carboxymethyl cellulose was produced primarily 

by extracting cellulose from wood and other plant-

based progenitors. These plants contained a lot of 

cellulose fibers that were essential for the 

production process. Therefore, the final factor 

influencing CMC production was the availability 

of these specific wood-based plants. As such, 

CMC production was largely limited by the 

availability of these plants and their connection to 

the process [3, 4]. 

 

However, daily cellulose-containing products have 

been proposed in the literature by numerous 

researchers as effective substitute alternatives in 

this situation.  

 

The several precursors based on plant (e.g., banana 

pseudo-stem [5], sago palm [6], corn stalks [8], 

corn husk [7], corn cobs [9], cacao pod husks [10], 

durian rind [11], maize stalks [12], the pulp of 

Eucalyptus globules [13], bagasse of sugarcane 

[14], the stalk of asparagus officinalis [15], 

pineapple peel [16], orange peel [17] etc.), 

additionally to some waste products (like as cotton 

gin wastes [18], wastepaper [19], waste paper 

sludge [20], textile waste [21], knitted rags [22] 

and cotton linter waste from the textile industry 

[23], etc.) for use in industrial-CMC manufacture, 

have attracted the interest of researchers.  

 

There are numerous applications for CMC and 

CMC-composites in the fields of biotechnology, 

pharmaceuticals, building materials, textiles, 

polymers, food, energy and cosmetics, because of 

the abundance of raw materials, straightforward, 

inexpensive method of procedure, the distinctive 

characteristics of surface [24], various formability 

[26], mechanical strength [25], tuneable 

hydrophilicity [27], viscosity [28], and rheological 

properties [29], as well as hundreds of other. For 

instance, CMC and its composites are frequently 

used in biomedical fields for a variety of purposes, 

including tissue engineering [30], bone-tissue 

engineering [31], wound dressing [32], Creating 

artificial organs or extracellular polymeric matrix 

mimics [33], manufacturing 3D-scaffolds for 

biocompatible implants [34] and producing 

absorbent nonwovens are a few examples. Because 

of their exceptional biocompatibility, binding 

ability to pharmaceutically active substances such 

as enzymes and medicines, pH sensitivity and high 

stability, CMC hybrid materials, films and CMC-

based hydrogels have attracted significant interest 

in the past few years for potential use in 

pharmaceuticals, particularly for drug delivery 

[35], drug emulsification [36], and drug 

stabilization [37].  

 

Additionally, CMC hybrid materials are employed 

as sizing and finishing agents in textile weaving 

[38], used for digital printing on textiles because of 

their qualities that thicken and sharpen colors [39], 

and as antioxidant, antiradical, absorbent textiles 

or antimicrobial because of their thermo 

sensitivity, pH, hygroscopic, and hygienic features 

[40-42].  

 

Due to their lack of flavor, caloric content, and 

physiological inertness, CMCs are utilized as a 

variety of auxiliary agents in food items and their 

packaging, including thickeners, emulsion 

stabilizers, adhesive stabilizers, and moisture 

binders. In addition, many researchers have so far 

shown how important CMC is in the wastewater 

treatment and production of ecologically friendly 

energy and its storage.  

 

CMC and its different composites have garnered a 

lot of attention recently as an affordable binding 

agent in biomass pellets (to cut down on excessive 

fuel loss), supplementary electrode material in 

batteries, and supercapacitor aerogels for effective 

energy storage [43, 44].  

 

Over the past years, CMC-hybrid compounds, 

particularly their hydrogels, have shown a few 

encouraging outcomes in the removing dye 

contaminants [45], numerous inorganic metal ions 

[46], and even certain radionuclides [47] from 

contaminated waters. 

 

CMC has also been suggested as a potential 

application in a number of other sectors, like in the 

paper industries. CMC helps in strengthening 

properties, color stability, ink retention or good 

printability, fire retardancy features [48, 49] 

improve adhesion properties [50], and also 

improve binding ability and cyclic performance of 

Si anode electrodes [51].  
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CMC has also been used in the oil business, the 

cosmetics industry, the dental industry, liquid 

detergent, the fertilizer industry and the building 

industry [52]. In order to visualize this, we discuss 

and compile the published CMC research here 

based on its applicability in a variety of food 

industries and water treatment methods. 

 

Application of Carboxymethyl Cellulose 

(CMC) 

Application in Food Industries 

Food-grade CMC (cellulose gum) is widely used 

because of its ability to thicken water, act as a 

moisture binder, dissolve rapidly in both hot and 

cold aqueous systems, and texturize a wide range 

of food products (Figure 1) and because it is 

tasteless, odorless, and forms clear solutions 

without cloudiness or opacity.  

 

Because it is physiologically inert and non-caloric, 

cellulose gum is particularly useful in dietetic 

foods. Cellulose gum serves as an extrusion aid, 

acts as a binder, helps to stabilize emulsions, and 

retards sugar crystal growth.  

 

In frozen products, it controls ice crystal growth 

and phase separation. It is compatible with a wide 

range of food ingredients, including proteins, 

sugars, and more hydrocolloids.  

 

The extensive acceptance of cellulose gum in so 

many culinary applications can be attributed to the 

variety of varieties that allow it to be customized 

to the various needs of the food industry. 

 

The provision of food for human society is a 

crucial function of the food industry. The food 

industry uses a variety of auxiliary agents, such as 

hydrocolloids such as xanthan gum powder, sugar 

beet pectin, and soluble soybean polysaccharide 

(SSPS) [53, 54], as well as different alginates, 

gums, agar, a little amount of galactomannans and 

pectin , modified cellulose or starches  CMC, and 

other polysaccharides to make high-quality foods.  

 

Due to some of its exceptional qualities, including 

being tasteless, odorless, non-caloric, medically 

inert, creating a transparent solution without 

opacity, impeding the ability of suspended 

particles to be gravitationally separated, etc. These 

CMC characteristics aid in enhancing the quality 

of food and the required pleasant texture to 

guarantee safety of food. CMC is frequently used 

in the food industry as emulsion stabilizers, 

thickeners, moisture binders, additive stabilizers, 

texture-improving and suspending agents, and 

other auxiliary agents. The structure, rheological 

properties, flavor, and the way products look as 

well as their pseudo plastic characteristics are also 

fine-tuned using CMC.  

 

In order to assure the food products' long-term 

safety, it is also employed as a packaging or 

coating material. On the usage of CMC in food 

products, numerous researches have been 

published in the literature. By regulating particle 

size, concentration, and texture, CMC, for 

instance, is employed like a thickening in olive oil-

based nano-emulsions to enhance the stability and 

physical properties [55].  

 

On the basis of different viscosity of CMC, it 

serves as moisture binder (low viscosity) and 

gelation agent (high viscosity) in food industries. . 

Additionally, it serves as a thickening in fruit 

syrup, salad dressing, and semisolid dairy products 

[56]. In order to maintain food safety, CMC is now 

employed as a hydrogel (dewatering agent) in fruit 

syrup or juice. Heat is necessary for the traditional 

thickening process, but it is not necessary for the 

super absorbing or dewatering processes when heat 

is present [57].  

 

As an emulsifier, CMC is used in wine, spreads, 

acidic beverages, dairy products like ice cream and 

milk, sauces, and bread goods. To make ice cream 

of the highest quality, 0.5% CMC is added as a 

stabilizer. By preventing the over-crystallization of 

lactose in cream, medium viscosity CMC improves 

the creamy mouthfeel [58].  

 

In the recent past, consuming CMCs in food 

industries has grown from a normal level to an 

advanced one because to their sanitary, 

biocompatible, and potential for preventing or 

managing human disease through diet. For 

instance, Dafe et al. [59] created a vehicle for 

CMC/k-carrageenan mixed foods to deliver 

probiotic-based food in the colon in order to avoid 

gastrointestinal illness. 
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Figure 1: Different applications of CMC in Food industries 

 

Drinks containing cocoa and acid are typically 

stabilized with CMC, which lessens layer 

formation and sedimentation at both high and low 

temperatures. Therefore, owing to the stabilization 

of minerals in fruit-based beverages or nutritional 

fiber, in the recent time combined form of CMC 

and gum tragacanth has been utilized as a stabilizer 

in drinks [60]. The immune system was 

strengthened and the gastrointestinal tract or 

mucosa's health was controlled by food, as 

advised. A similar coating material was suggested 

by Ngamekaue et al. [61] in 2019 for transporting 

a herbal-infused microcapsule oil (a combination 

of oil of holy basil with gelatin) to the intestine. 

The microcapsule is protected from acid, moisture, 

or oxidative effects by a CMC/beeswax covering 

composite while also assisting in the management 

of the herbal product once it reaches the gut. 

 

The body responds favorably to the suggested 

herbal items as effective antioxidants, anticancer 

agents, etc., hence reducing the risk of non-

communicable diseases. As a result, bio-based 

CMC coatings made of grape seed extract and 

essential oils have also been used on fish [62]. 

Making nutritious food items is significantly 

hampered by the high fat content of the food  

 

(meat). CMC compounds are utilized as fat 

substitutes or reducers to address this issue. Gibis 

and coworkers [63] utilized MCC 

(microcrystalline cellulose) and CMC as fat 

substitutes for manufacturing fried patties of beef, 

CMC with 0.5% concentration being selected as a 

superior source of flavor, texture, and juiciness. 

Han et al. [64] on the other hand, created healthier 

beef products with a focus on high nutrition and 

low fat. To lessen the risk of colon cancer, 

cardiovascular disease, and other conditions, CMC 

and other food fibers (such as chitosan cellulose, 

pectin, inulin, and so on) are used in the processing 

of meat as texture modifiers, nutrition enhancers 

and fat reducers.  

 

In the last ten years, CMC has been used as a food 

packaging material, according to many 

researchers. Khezrian et al. [65] created a 

packaging material based on nanocomposite with 

an essential oil doped chitosan/ montmorillonite/ 

CMC for increasing the shelf life of camel meat.  

Furthermore, biodegradable and environmentally 

friendly PVP-CMC hydrogel film is frequently 

employed as a principal packaging material for 

food commodities [66]. A biodegradable and 

antibacterial packaging material made of the 
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combination of a metal cation-based film and 

CMC/PVA/zeolite has been disclosed. This 

antibacterial property keeps food from rotting and 

extends product shelf life. In packaging materials, 

films made from CMC-CHPS (chickpea husk 

polysaccharides) have antioxidant and 

antibacterial properties. Combination of CMC, 

montmorillonite and dopamine has recently 

resulted in the development of high stiffness and 

high thermal stability-based packaging materials 

[67]. 

 

Application in the Water Treatment Process 

Water is the world's most abundant natural 

resource; however, only about 3% of existing 

water reserves are freshwater, and less than one-

third of this freshwater is usable for various 

domestic, agricultural, and industrial uses [68]. 

While water consumption is increasing 

dramatically, the availability of freshwater is being 

depleted due to an increase in pollution, resulting 

in water shortages for modern society [69]. Rapid 

industrialization, uncontrolled urbanization, and a 

variety of human activities, combined with 

inefficient waste management, all contribute to this 

growth in wastewater. Water contamination has 

recently emerged as one of the world's most 

pressing challenges. Every day, a massive amount 

of contaminants enter aquatic habitats from various 

industries and household activities, causing a 

variety of illnesses in various living things and 

humans. The amount of contaminants and toxins 

that can be found in wastewater from several 

businesses or household activities has no set upper 

limit. The two most frequent contaminants found 

in industrial effluent are dyes and heavy metals, 

both of which are detrimental to ecosystem 

sustainability [70, 71]. Even at low concentrations, 

the presence of dyes restricts penetration of 

sunlight into water, resulting in a prominent loss of 

dissolved oxygen, posing severe health dangers to 

aquatic living entities. In many situations, dyes 

cause anaerobic digestion, resulting in the 

formation of several carcinogenic chemicals that 

can penetrate in the food chain by aquatic 

creatures. 

 

On the other hand, the dye concentration disposed 

of into various water bodies remains large. For 

example, about 7 𝗑 105 tonnes of various reactive 

dyes are generated each year, with approximately 

5-10% of these dyes ending up in the environment. 

Effluents from industry, heavy metals, on the other 

hand, pose major health risks due to their high 

carcinogenic and poisonous potential. Chronic 

arsenic (As) exposure, for example, can result in 

severe disorders like bladder, kidney, liver cancer 

or prostate. Chromium (Cr) is another very 

hazardous metal that has a negative impact on both 

human bodies and aquatic creatures [72]. The 

dangers of heavy metals and dyes to the health of 

humans and the normal environment underline the 

importance of industrial wastewater treatment. 

Distillation, adsorption, coagulation, membrane 

filtration, redox, electrochemical treatment, are 

some common physical and/or chemical processes. 

The most popular and efficient technique for 

treating contaminated water is adsorption. 

Although activated carbon is an extremely 

effective adsorbent, its widespread use for 

wastewater treatment is constrained by its high 

cost and labor-intensive regeneration process. 

Although numerous adsorbents have been found in 

recent studies to remove heavy metals and dyes 

from polluted industrial water, treatment of bulk 

wastewater by using these adsorbents is still 

difficult [73, 74]. Due to their great removal 

effectiveness, hydrogels, which are three-

dimensional polymer networks, have recently 

gained a lot of attention in the fight to remove 

contaminants from waste streams [75]. The high 

porosity and abundance of hydrophilic functional 

groups in hydrogels (such as -OH, -COOH, -NH2, 

-SO3H, -CONH2, etc.) allow for the retention and 

adsorption of a significant amount of water during 

the treatment process, leading to the eventual 

removal and recovery of all aqueous dyes and 

heavy metals [76].The majority of the hydrogels 

that are currently in use, however, are made from 

materials that are neither renewable nor 

biodegradable, such as petrochemicals. The most 

prevalent polymer in nature, cellulose, is the 

source of carboxymethyl cellulose-based 

hydrogels (CBHs), which are extremely absorbent, 

long-lasting, non-toxic, biocompatible and 

biodegradable[77].  

 

Analysts have recently explored employing 

various CBHs to virtually completely remove 

heavy metals and colors from polluted water. In 

this series three-dimensional polymer networks of 

carboxylated hydrogels have been employed by 

Zhou et al. [78] to remove Pb+2 with 90% removal 

efficiency within four hours.  Using various kinds 

of CBHs, such high adsorption values were also 

attained for Cu2+ (182-230 mg/g), Ni2+ (200 mg/g), 

and Hg2+ (140 mg/g) [79]. Recently, Deng et al. 

[80] used chitosan and cellulose to remove nearly 

100% of Congo Red dyes with 166.1 mg/g 

saturation adsorption. There are still many 

potential applications for CBHs since the 

modification of HG functional groups improves 

their adsorption efficiency (Figure 2). 
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Figure 2: Application of CMC in wastewater treatment based on different interactions. 

 

The impetus behind the current work is the paucity 

of reviews in this particular field, despite the fact 

that many research studies employed CBHs to treat 

contaminated water sources. The different 

interactions that result in the typical adsorption by 

CBHs are strongly influenced by the adsorbent 

characteristics, functional groups present in the 

HG, , the chemical composition of pollutants, and 

experimental parameters (like as solution pH, the 

coexistence of metal ions, initial pollutant 

concentration, temperature, etc.) [81].  

 

Electrostatic interactions are the primary 

adsorption process used by CBHs to remove heavy 

metals and dyes, while various adsorption 

processes have also been found to combine 

electrostatic interactions with other interactions 

[82,83].  

 

CMC-based composites will naturally show a 

larger adsorption tendency towards metal ions and 

other cationic pollutants than anionic contaminants 

because they have electronegative carboxymethyl 

groups (COOH) on their surface. Adsorbents 

struggle to effectively bind negatively charged 

impurities for a sustained period of time due to 

electrostatic repulsion between anionic 

contaminants and opposing surface charges. 

Probably, this is the only cause of scarcity of 

research on anionic pollutant removal by CMC-

hybrid materials to treat the contaminated water in 

comparison to cationic pollutants in the literature. 

 

As a result, we recommend concentrating on the 

development of hybrid materials that are CMC-

based, more efficient, and less expensive, in 

particular nano-hybrid super-absorbent materials. 

To remove different cationic contaminants from 

wastewater, including cationic dyes, metal ions, 

various cationic and radioactive elements, more 

study will be needed in the future. Additionally, 

CMC-based adsorbents' surfaces may be improved 

in the future through hybridization with various 

kinds of organic-inorganic positively charged 

species, making them more effective for the 

simultaneous treatment of cationic and anionic 

pollutants. 

 

Conclusion 

Although the sources of CMCs were restricted at 

the start of its development, in the current scenario, 

CMC is preferred over other derivatives because of 

its versatility and quantity of precursor ingredients. 

Numerous of their substitutes have been proven 

scientifically over the course of the last two 

decades. Maize husks was the most promising 

discovered material among them, which offered 

the highest product yield with appropriate purity. 

Essentially, based on their diverse uses and 

applications, CMCs are now used in biomedical 

engineering, textile, pharmaceutical, and food 

industries. One of the most prevalent contaminants 

in wastewater is dyes and heavy metals, which are 

discharged by a variety of businesses and have a 

negative impact on the ecosystem, human health, 

and aquatic life. The removal of contaminants from 

wastewater is therefore essential for a safer 
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environment. Cellulose-based hydrogels (CBHs) 

are excellent choices since they satisfy the criterion 

while also offering further advantages such high 

removal effectiveness, cost-effectiveness, and 

simplicity. The synthesis of CBHs, the adsorption 

process, and parameters to maximize adsorption 

capacities are some of the significant components 

of wastewater treatment utilizing CBHs that have 

hardly been discussed in the literature. The 

effective use of CMCs in the water treatment 

process to remove additional contaminants is now 

a growing area of research. Despite the fact that 

several hybrid materials, particularly a variety of 

super-absorbents based on CMC, have been 

reported in this context, there is still a great 

possibility that many more can be created in the 

future. 
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