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Abstract 

 

Aim: The objective of this research paper is to detect the spam comments on YouTube videos with an enhanced 

accuracy rate by using Novel Decision Tree (D-Tree) in comparison with K-Nearest Neighbor (KNN) Classifier. 

Materials & Methods: The data set in this paper utilizes UCI machine learning repositories. The sample size of 

predicting the spam comments on YouTube videos with enhanced accuracy rate was sample 80 (Group 1=40 

and Group 2 =40) and calculation is performed utilizing G-power 0.8 with alpha and beta qualities are 0.05, 0.2 

with a confidence interval at 95%. Predicting the spam comments on YouTube videos with enhanced accuracy 

rate is performed by Novel Decision Tree (D-Tree) whereas the number of samples (N=10) and K-Nearest 

Neighbor (KNN) were the number of samples (N=10). 

Results: The Novel Decision Tree (D-Tree) classifier has 94.47% higher accuracy rates when compared to the 

accuracy rate of K-Nearest Neighbor (KNN) is 86.91%. The study has a significance value of p<0.05 i.e. 

p=0.0291.  

Conclusion: The Novel Decision Tree (D-Tree) provides the better outcomes in accuracy rate when compared 

to K-Nearest Neighbor (KNN) for detecting the spam comments on YouTube videos with enhanced accuracy 

rate. 

 

Keywords: Spam Detection, Novel Decision Tree  Classifier, K-Nearest Neighbor Classifier, Accuracy Rate, 

Youtube Spam, Machine Learning.    
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1. Introduction 

 

The aim of the research paper is to detect the spam 

comments on YouTube videos with an enhanced 

accuracy rate. YouTube is one of the biggest sites 

for users to get information on the Internet 

(Schultes, Dorner, and Lehner 2013). Because of 

that, many spammers will trick the YouTube user 

by spamming the YouTube comments. According 

to Hamou (Hamou and Amine 2013), spam is now 

a trend attack and YouTube defines spam as 

inappropriate comments, such as abuse or trolling, 

and also people trying to sell things. Ham can be 

defined as “good comments” for YouTube free 

from spam comments. Spam can be categorized as 

dangerous because spam has the potential of cyber 

security threat for end users. The spammer used 

this opportunity to spread malware through 

comment fields, which will exploit vulnerabilities 

in the user’s machines. Another intention includes 

seizing money transactions and hijacking credit 

card and banking information. Besides, spammers 

tend to ruin the content of web pages. This action 

will lead visitors to be annoyed overall with the 

posted content (Alsaleh et al. 2015). This paper 

proposes a new approach by comparing the 

analysis results using an Innovative Decision Tree 

(D-Tree) and the K-Nearest Neighbor 

classification. The experimental results show that 

the proposed Decision Tree (D-Tree) model gives a 

superior performance than the existing K-Nearest 

Neighbor (KNN) model (Aiyar and Shetty 2018). 

There are several studies to detect YouTube Spam 

such as proposed to classify the YouTube comment 

as Spam and Ham by using machine learning 

algorithms. IEEE Explore published 105 research 

papers, and Google Scholar found 97 articles. The 

paper by  (Jin et al. 2011) focuses on clearing out 

spam videos and at the same time also identifies the 

spammers responsible. The classification is done 

with ID3, K Nearest Neighbors, and Innovative 

Decision Tree (D-Tree) algorithms. Distinguishing 

feature selector and Gini Index  feature selection 

methods have been reported to provide the best 

classification results in spam filtering tasks on 

YouTube (Alberto, Lochter, and Almeida 2015b). 

The authors recommend Decision Tree (D-Tree) 

classifiers over Naïve Bayes (NB) for spam 

filtering on YouTube(Alberto, Lochter, and 

Almeida 2015b). A comparative analysis of 

common YouTube comment spam filtering 

techniques show that high filtering accuracy (>= 

98%) can be achieved with low-complexity 

algorithms (Abdullah et al. 2018). This study uses 

features based on the EdgeRank algorithm and is 

based on experiments employing nine different 

learning classifiers such as decision trees, Bayesian 

and function-based. The approach in (Chowdury et 

al. 2013)works with TubeKit API to crawl 

YouTube and create a dataset used to train their 

classifier to identify if the video is spam or not. It 

works with algorithms such as Naïve Bayes, 

Decision tree (D-Tree), and Clustering to label 

instances as spam or legitimate and compares the 

results from each approach to identify the most 

effective method of classification. (Alias, Foozy, 

and Ramli 2019) used six classifiers of machine 

learning techniques i.e Random Tree (RT), 

Random Forest (RF), Naive Bayes, KStar, Decision 

Tree, and Decision Stump for YouTube live 

streaming spam comments detection. Alberto, 

Lochter, and Almeida (Alberto, Lochter, and 

Almeida 2015a) introduces an online tool called 

TubeSpam for automatically detecting spam 

comments posted in the comments sections of 

YouTube videos. The authors also evaluate 

different state-of-the-art classification techniques 

and conclude that decision trees, logistic 

regression, Bernoulli naïve Bayes, random forests, 

and support vector machines are statistically 

equivalent. The most cited article was 

(O’Callaghan et al. 2012) in IEEE Explore which 

has 83 citations and 1556 full text views. 

Our institution is keen on working on latest 

research trends and has extensive knowledge and 

research experience which resulted in quality 

publications (Rinesh et al. 2022; Sundararaman et 

al. 2022; Mohanavel et al. 2022; Ram et al. 2022; 

Dinesh Kumar et al. 2022; Vijayalakshmi et al. 

2022; Sudhan et al. 2022; Kumar et al. 2022; 

Sathish et al. 2022; Mahesh et al. 2022; Yaashikaa 

et al. 2022). The main problem with this existing 

method is with a large data set, the prediction stage 

might be slow and accuracy depends on the quality 

of the data. In this paper, an automation technique 

for the prediction of spam comments in YouTube 

videos using the Decision Tree (D-Tree) method in 

comparison with the K-Nearest Neighbor (KNN) 

method. The Innovative Decision Tree algorithm is 

to better understand the effectiveness of spam 

comment prediction. The aim of this paper is to 

evaluate the accuracy of the Decision Tree (D-

Tree) and K-Nearest Neighbor  (K-NN) classifier 

before and after optimizing the important 

parameters using the Python software tool. The 

comparison of the two different models 

DecisionTree (D-Tree) and K-Nearest Neighbor 

(K-NN) are to be tested. The performance analysis 

of the proposed spam comment detection method 

gives better results than the existing K-Nearest 

Neighbor (K-NN) method. 

 

2. Materials and Methods 

 

This work was carried out in the Digital Image 

Processing Laboratory, Department of Computer 
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Science and Engineering, Saveetha School of 

Engineering. In this paper, The YouTube Spam 

Collection Data Set Collect from Kaggle(Lichman 

and Others 2013). The dataset contained ten 

selected videos and was downloaded from 

YouTube through API. It is composed of 1,956 real 

and non-encoded messages that were labeled as 

legitimate (ham) or spam. Each sample represents a 

text comment posted in the comments section of 

each selected video. Group 1 was a K-Nearest 

Neighbor (KNN) algorithm and Group 2 was an 

innovative Decision Tree (D-Tree)  model. Python 

3.9.2 and the NLP library were used for all 

implementations. The calculation is  performed 

utilizing G-power 0.85 with alpha and beta 

qualities 0.05, 0.1 with a confidence interval at 

95%. The steps involved in the implementation of 

the Innovative Decision Tree(D-Tree)  algorithm 

are described as follows.  

 

K-Nearest Neighbor Algorithm 

The k-nearest-neighbors algorithm is a 

classification algorithm, and it is supervised: it 

takes a bunch of labeled points and uses them to 

learn how to label other points. To label a new 

point, it looks at the labeled points closest to that 

new point (those are its nearest neighbors), and has 

those neighbors vote, so whichever label the most 

of the neighbors have is the label for the new point 

(the “k” is the number of neighbors it checks). 

KNN algorithm is widely applied in pattern 

recognition and data mining for classification, 

which is famous for its simplicity and low error 

rate. A train data set with accurate classification 

labels should be known at the beginning of the 

algorithm. Then for a query data qi, whose label is 

not known and which is presented by a vector in 

the feature space, calculate the distances between it 

and every point in the train data set. After sorting 

the results of distance calculation, the decision of 

the class label of the test point qi can be made 

according to the label of the k nearest points in the 

train data set. The quality of the train data set 

directly affects the classification results. It is a 

nonlinear model which is built by many linear 

boundaries, here for a model  that gives both labels 

and features so that it will understand to classify 

points based on features, due to overfitting in the 

data it is not accurate compared with other 

algorithms shown in Fig. 1. 

The sample group 1 is the K-Nearest Neighbor 

(KNN) algorithm is a simple, supervised machine 

learning algorithm that can be used to solve both 

classification and regression problems.  The steps 

involved in the implementation of the Innovative 

Decision Tree algorithm are described as follows. 

 

Decision Tree Algorithm 

The decision tree algorithm is based on Entropy, its 

main idea is to map all examples to different 

categories based upon different values of the 

condition attribute set; its core is to determine the 

best classification attribute from condition attribute 

sets. The algorithm chooses information gain as 

attribute selection criteria; usually the attribute that 

has the highest information gain is selected as the 

splitting attribute of the current node. Branches can 

be established based on different values of the 

attributes and the process above is recursively 

called on each branch to create other nodes and 

branches until all the samples in a branch belong to 

the same category. To select the splitting attributes, 

the concepts of Entropy and Information Gain and 

Gain Ratio are used. Entropy is a measure in 

information theory, which characterizes the 

impurity of an arbitrary collection of examples. If 

the target attribute takes on 'c' different values, then 

the entropy S relative to this c-wise classification is 

defined as   

                                             Entropy(s) = Σ - pi 

log2p                       (1) 

Where Pi is the probability of S belonging to class 

i. Logarithm is base 2 because entropy is a measure 

of the expected encoding length measured in bits. 

The decision tree is built in a top-down fashion. 

ID3 chooses the splitting attribute with the highest 

gain in information, where gain is defined as the 

difference between how much information is 

needed after the split. This is calculated by 

determining the differences between the entropies 

of the original data set and the weighted sum of the 

entropies from each of the subdivided data sets. 

The motive is to find the feature that best splits the 

target class into the purest possible children nodes - 

pure nodes with only one class. This measure of 

purity is called information. It represents the 

expected amount of information that would be 

needed to specify how a new instance of an 

attribute should be classified. The formula used for 

this purpose is: 

         G(D,S) = H(D) -ΣP(Di)H(Di)                                 

(2) 

The attribute with highest value of information gain 

is used as the splitting node thereby constructing 

the tree in top down fashion shown in Fig. 2. 

The sample preparation group 2 is the novel 

Decision Tree (D-Tree) algorithm, which is 

considered to be one of the most useful Machine 

Learning algorithms since it can be used to solve a 

variety of problems. It can be used for 

classification and regression problems. The 

experimental results show that the proposed D-Tree 

method has achieved better accuracy results. 

 

Statistical Analysis 

https://paperpile.com/c/YAkYPd/ccRRP
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The output is obtained by using Python software. 

To train these datasets, required a monitor with 

resolution of 1024×768 pixels (7th gen, i5, 4 8GB 

RAM, 500 GB HDD), and Python software with 

required library functions and tool functions. For 

statistical implementation, the software tool used 

here is IBM SPSS V26.0(Hilbe 2004). The 

independent sample t test was performed to find the 

mean, standard deviation and the standard error 

mean statistical significance between the groups, 

and then comparison of the two groups with the 

SPSS software will give the accurate values for the 

two different s which will be utilized with the 

graph to calculate the significant value with 

maximum accuracy value (94.47%), mean value 

(94%) and standard deviation value   (0.84738). 

Dependent variables are accuracy and independent 

variables are KNN and  D-Tree methods. 

 

3. Results 

 

Figure. 3 shows the simple bar graph for K-Nearest 

Neighbor (KNN) Classifier accuracy rate is 

compared with Decision Tree (D-Tree) Classifier. 

The Decision Tree (D-Tree) Classifier is higher in 

terms of accuracy rate 94.47% when compared 

with K-Nearest Neighbor (KNN) Classifier 

86.91%. Variable results with its standard deviation 

ranging from 80 lower to 90 higher K-Nearest 

Neighbor (KNN) Classifier where Decision Tree 

(D-Tree) Classifier standard deviation ranging from 

90 lower to 100 higher. There is a significant 

difference between K-Nearest Neighbor (KNN) 

Classifier and Decision Tree (D-Tree) Classifier 

(p<0.05 Independent sample test). X-axis: Decision 

Tree (D-Tree) Classifier accuracy rate vs K-

Nearest Neighbor (KNN) Classifier Y-axis: Mean 

of accuracy rate, for identification of keywords ± 1 

SD with 95 % CI. 

Table.1 shows the Evaluation Metrics of 

Comparison of K-Nearest Neighbor (KNN) and 

Decision Tree (D-Tree) Classifier. The accuracy 

rate of K-Nearest Neighbor (KNN) is 86.91% and 

Decision Tree (D-Tree) is 94.47%. In all aspects of 

parameters Decision Tree (D-Tree) provides better 

performance compared with the K-Nearest 

Neighbor (KNN) of predicting Spam comments on 

YouTube videos with improved accuracy rate. 

Table.2 shows the statistical calculation such as 

Mean, standard deviation and standard error Mean 

for K-Nearest Neighbor (KNN) and Decision Tree 

(D-Tree). The accuracy rate parameter used in the 

t-test. The mean accuracy rate of K-Nearest 

Neighbor (KNN) is 86.91% and Decision Tree (D-

Tree) is 94.47%. The Standard Deviation of K-

Nearest Neighbor (KNN) is 1.03829 and Decision 

Tree (D-Tree) is 0.84738. The Standard Error 

Mean of K-Nearest Neighbor (KNN) is 0.82939 

and Decision Tree (D-Tree) is 0.18394. 

Table.3 displays the statistical calculations for 

independent samples tested between K-Nearest 

Neighbor (KNN) and Decision Tree (D-Tree). The 

significance. The signal to noise ratio is 0.0291. 

Independent samples T-test is applied for 

comparison of K-Nearest Neighbor (KNN) and 

Decision Tree (D-Tree) with the confidence 

interval as 95% and level of significance as 

0.33232. This independent sample test consists of 

significance as 0.001, significance (2-tailed), Mean 

difference, standard error difference, and lower and 

upper interval difference. 

 

4. Discussion 

 

A comparative study has been presented between 

decision tree and k-nearest neighbor models. 

Accuracy analysis has been performed to 

investigate the importance of each of the input 

parameters. D-Tree provides better accuracy output 

when compared to the KNN algorithm(Aziz, 

Foozy, and Shamala 2017). D-Tree is a powerful 

technique to classify human misbehavior activity. 

The accuracy result produced by D-Tree is better 

than the KNN method. D-Tree can significantly 

improve classification accuracy and time 

efficiency. This shows that the maximum accuracy 

is obtained quickly in the D-Tree algorithm. During 

the training process, the confusion matrix was used 

to evaluate the classification models (Thapa et al. 

2021). The confusion matrix is a matrix that maps 

the predicted outputs across actual outputs. It is 

often used to describe the performance of a 

classification model on a set of test data. Important 

metrics were computed from the confusion matrix 

in order to evaluate the classification models(Ifriza 

and Sam’an 2021). In addition to correct 

classification rate or accuracy other metrics that 

were computed for evaluation were True Positive 

Rate (TPR), False Positive Rate (FPR), Precision, 

Accuracy, F1 score, and Misclassification rate.  

Here I extracted the comments using the video 

URL and manually categorized them into four 

classes. Experiments were carried out to 

automatically categorize the extracted comments. 

The classified comments were evaluated using 

Precision (P), Recall (R) and Accuracy (A) metrics, 

estimated as below. 

                                           Precision =TP/(TP + FP)                                    

(3) 

                                            Recall =TP/(TP + FN)                                       

(4) 

                                        Accuracy =( TP + 

FN)/(TP + FP +TN + FN)        (5) 

Precision is calculated as the ratio of the number of 

true positives to the total number of comments 
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classified to be true. Recall represents the ratio of 

the number of true positives to the total number of 

comments that are true and accuracy represents the 

total comments that are classified as true to the 

total number of comments that are classified (Han, 

Pei, and Kamber 2011). For relevant comments, TP 

indicates the number of relevant comments that are 

correctly classified as relevant, FP indicates the 

number of non-relevant comments that are 

incorrectly classified as relevant, TN represents the 

number of non-relevant comments that are 

correctly classified as non-relevant comments and 

FN represents the number of relevant comments 

that are incorrectly classified as non-relevant 

comments. 

In classification, a total of two algorithms 

implemented in python were set as classifiers in 

detecting YouTube spam comments. The purpose 

of implementing the two algorithms is to compare 

accuracy. The classification of accuracy across two 

different classification algorithms such as Decision 

Tree (D-Tree) and k-Nearest Neighbor (KNN) 

using data proportion of 80:20 Ratio means 80% 

for training and 20% for testing. The result shows 

that the D-Tree classifier gives the highest accuracy 

when testing in python compared to the KNN 

classifier (Sadoon et al. 2017; Kanodia, 

Sasheendran, and Pathari 2018). The goal of this 

work is to find which algorithms provide high and 

best accuracy and precision to help in detecting 

Spam comments on YouTube  (Sadoon et al. 

2017). Using the D-Tree algorithm hope to 

overcome the disadvantages faced by the existing 

systems and achieve results that are more efficient 

and accurate in the classification of a given video 

as spam. The limitation of the proposed method is 

that the computational cost increases when the k 

value increases. Future work, with the deep neural 

network based implementations such as 

convolutional recurrent neural networks, may 

obtain better accuracy results for detecting 

unwanted YouTube Comments. 

 

5. Conclusion 

 

In this research, the development of a Youtube 

spam comment detection framework by using 

machine learning techniques has been done. It is 

important to improve security since the Internet 

nowadays indicates the security issues. The 

proposed model exhibits the K-Nearest Neighbor 

(KNN) and Decision Tree (D-Tree), in which the 

Decision Tree (D-Tree) has the highest values. The 

accuracy Rate of Decision Tree (D-Tree) is 94.47% 

is higher compared with K-Nearest Neighbor 

(KNN) that has an accuracy rate of 86.91% in 

analysis of detecting Spam comments on YouTube 

videos with improved accuracy rate. 
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Tables And Figures 

 

Table.1. Comparison of K-Nearest Neighbor (KNN) and  Decision Tree (D-Tree) Classifier for predicting the 

spam comments in YouTube videos with improved accuracy rate. The accuracy rate of K-Nearest Neighbor 

(KNN) is 86.91 and  Decision Tree (D-Tree) has 94.47. 

 

SI.No. 

 

Test Size 

Accuracy Rate 

K-Nearest   Neighbor Decision Tree 

1 Test 1 84.23 90.10 

2 Test2 84.43 90.50 

3 Test3 84.87 90.77 

4 Test4 85.12 91.92 
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5 Test5 85.23 92.42 

6 Test6 85.34 92.91 

7 Test7 86.27 93.65 

8 Test8 86.42 93.88 

9 Test9 86.78 94.18 

10 Test10 86.90 94.34 

 

Table .2. The statistical calculation such as Mean, standard deviation and standard error Mean for K-Nearest 

Neighbor (KNN) and Decision Tree (D-Tree). The accuracy rate parameter used in the t-test. The mean 

accuracy rate of K-Nearest Neighbor (KNN) is 86.91 and Decision Tree (D-Tree) is 94.47. The Standard 

Deviation of K-Nearest Neighbor (KNN) is 1.03829 and the Decision Tree (D-Tree) is 0.84738. The Standard 

Error Mean of K-Nearest Neighbor (KNN) is 0.82939 and the Decision Tree (D-Tree) is 0.18394. 

Group N Median 
Standard 

Deviation 

Standard 

Error 

Median 

 

Accuracy 

Decision Tree 10 94.47 0.84738 0.18394 

K-Nearest Neighbor 

(Knn) 
10 86.91 1.03829 0.82939 

 

Table. 3. The statistical calculations for independent samples tested between K-Nearest Neighbor (KNN) and 

Decision Tree (D-Tree). The significance for signal to noise ratio is 0.0291 Independent samples T-test is 

applied for comparison of K-Nearest Neighbor (KNN) and Decision Tree(D-Tree) with the confidence interval 

as 95% and level of Significance as 0.33232, This independent sample test consists of significance as 0.001, 

significance (2-tailed), Mean difference, standard error difference, and lower and upper interval difference. 
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Fig.1.  Flow Chart of K-Nearest Neighbor (KNN) 
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Fig. 2 Flow Chart of Decision Tree (D-Tree) 

 

 

 
Fig. 3. Bar graph between KNN and Innovative Decision Tree Classifier. Comparison of KNN algorithm and 

DT in terms of mean accuracy. The mean accuracy of KNN is better than NB and the standard deviation of 

KNN is slightly better than DT. X-Axis: KNN vs DT Y-Axis: Mean accuracy of detection ± 1 SD with CI of  

95%. 

 


