
Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1277

STUDY ON SOFTWARE NETWORK

CONTROLLABILITY USING THE SOURCE-DRIVEN

MODEL

Dr. Anand Singh Rajawat1, Prof. Namrata D. Ghuse2, Mr. Mahesh

Vijayrao Korde3

Article History: Received: 12.12.2022 Revised: 29.01.2023 Accepted: 15.03.2023

Abstract

With software evolution, software system complexity has risen, which has an impact on the stability of software

structure. The majority of the measurement techniques currently in use concentrate on the analysis of network

topology's macro-characteristics, but they lack sufficient depth and breadth to explore the nature of the

complexity of the software structure. To address this issue, the complex network control theory was applied to

the investigation of software network controllability. Initially, based on system control theory, the Source-

Driver (SD) model was created, and the driver node sets were constructed using the minimal input theorem

during the management of the software network architecture; Due to the non-uniqueness of the driver node sets,

the relationship between the degree and centre degree as well as the relationship between the in-degree and the

out-degree of the software network architecture were then further examined; The four indicators' values in the

software system were then compared. The action on control nodes and driver nodes is not random, the

controllability of the driver nodes is closely related to the in-degree, and when selecting the driver node sets, the

network topology characteristics should be taken into full consideration. Experimental results show that the

driver node sets in software networks are primarily composed of nodes with low degree values, but this does not

mean that the nodes whose in-degree values and out-degree values are also low. The findings have significant

guiding implications for the management, upkeep, and redesign of software architecture.

Keywords: Network control, software networks, driver node sets, and complex networks.

1Associate Professor, Department of Computer Science & Engineering, School of Engineering and Technology,

Sandip University, Nashik, Maharashtra 422213
2Assistant Professor, Department of Computer Science & Engineering, Sandip Institute of Technology &

Research Centre, Nashik, Maharashtra 422213
3Assistant Professor, Department of Computer Science & Engineering, Sandip Institute of Engineering and

Management, Nashik, Maharashtra 422213

Email: 1anand.rajawat@sandipuniversity.edu.in, 2namrata.ghuse@sitrc.org, 3mahesh.korade@siem.org.in

DOI: 10.31838/ecb/2023.12.s3.142

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1278

1. Introduction

With the fast advancement of big data technology

in the setting of the Internet era, software systems

based on networks have quickly grown in size,

number of users, and interaction of component

pieces, becoming a type of complex system (Wang

et al., 2019). Understanding the fundamental

properties of software requires the interdisciplinary

integration of software engineering and complex

systems, abstract software systems into the

artificial complex networks (i.e., software

networks) from the perspective of complex systems

and complex networks, which explore and discover

the structural characteristics, evolution rules, and

behaviour characteristics of complex software

systems from the whole and global perspectives.

During the last ten years, software networks have

been developed, and several research techniques

have produced findings in the assessment of

software static structural features and software

dynamic behaviour(Ma et al., 2010). Yet as the

application environment becomes more intricate,

software development becomes more dangerous.

Software product quality is difficult to ensure.

People are investigating ways to make complex

networks better as complex networks theory

research advances (P. Li et al., 2010). People have

been interested in learning how to successfully

regulate the structure and behaviour of complex

dynamic systems since since (H. Pan et al., 2019)

published their groundbreaking study on structural

control of complex networks in 2011. By

presenting the matching theory of directed graphs

and the structural controllability theorem, he

developed the controllability model of complex

networks. To fully control the network, he input

the control signals to the least driver node sets.

Based on this, (W.-F. Pan et al., 2013) used the

PHB matrix criteria and the eigenvalues of the

network dynamics coupling matrix to calculate the

number of control input nodes. In order to identify

the smallest driver node sets in networks and

examine the node structure inside them, (Wu et al.,

2018) presented a sort of random matching

approach. In-degree and out-degree, in-degree and

in-degree, out-degree and out-degree, and out-

degree and out-degree correlation coefficients were

established by (Jiang et al., 2018) and their link to

network controllability was examined. The

controllability of real network edges was studied

by (W.-F. Pan et al., 2013) using controllable limit

theory to investigate the impact of the correlation

between out-degree and in-degree (i.e. degree

correlation). Through analysis and calculation, it

was revealed that the upper and lower controllable

limits were applicable to all varieties of real

networks, which advanced our understanding of the

controllability of real network edges.

The study of complex networks gives compelling

evidence in favour of investigating the structural

properties of massively parallel software systems.

To improve the quality of software systems,

(Guan-Rong, 2013), and others developed an

enhanced box covering technique to examine the

multi-fractal of software networks. By examining

only a few number of essential functional nodes,

(H. Li, 2020) examined the stability, dependability,

and resilience of software networks and developed

a new approach for mining the top-k critical nodes

in directional weighted complex software networks

based on semi global information. The

interdependence of functions in various pieces of

software was used by (Yuan et al., 2013) to

identify susceptible nodes and offer an efficient

approach for evaluating software leaks. There has

been minimal study on the controllability of

software network topology up to this point, despite

the relative maturity of the applications of software

system complexity assessment, topological

characteristics, and information transfer. An

audacious attempt to broaden the scope of

complicated network control research is the

application of the network controllability theory to

software networks. Software networks share

comparable network topology features with

traditional complex networks (Tian et al., 2022),

and thus invariably experience certain structural

control issues. More research is required to see

whether it exhibits comparable distinctive rules to

the control features of complex networks.

The "Source-Driver" (SD) model, which expresses

the control process of networks in an

understandable and straightforward manner, is

established in this paper based on research on the

controllability of complex networks, prior

experience, and analysis methods of software

measurement. Next, software networks are applied

to the SD model to study the controllability of

software networks combined with the

characteristics and rules of the software. Lastly, in

order to investigate how to choose driver node sets

in networks efficiently, the distribution relation on

in-degree, out-degree, degree, and center-degree is

thoroughly examined. The results will serve as a

reference point for software system maintenance.

The remaining portions of the essay are structured

as follows: The foundation for network

controllability analysis and some fundamental

theories concerning network control aspects are

introduced in Section 2. The software network

controllable model (SD model) is developed in

Section 3. The experiments in Section 4 cover the

SD model software network topology control

process and assess the distinctive relationships

between various software versions to investigate

the choice of driver node sets. Ultimately, the

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1279

article comes to an end, and Section 5 provides

guidance for the future.

2. Process and Technique of Control

2.1. Fundamental Concepts and Meaning
Definition a single control node It speaks about the

nodes that receive the control signals. Control

signals are utilised among them for receiving and

promptly forwarding to any network node.

Definition Control nodes that do not share the same

input nodes are the two driver nodes(Pósfai et al.,

2013). The minimal driver node sets are the bare

minimum of driver nodes necessary to properly

control the states of every node in the networks.

Definition 3 Center-degree (Liu & Pang, 2020):

This term refers to the reciprocal of the total of the

shortest paths between each node, multiplied by

N1. It is written as follows:

where dij is the length of the shortest path between

nodes I and j.

1st Theorem Theorem on minimum input: The

minimal output set (MOS) is equal to the minimal

input set (NI) (ND). The minimal input set is any

node in the networks if the networks are perfectly

matched; otherwise, it is the node set that remains

unmatched after the maximum matching, as shown

in the following example:

NI = ND = max 1, { N × M ∗ } (2)

where |M*| is the directed network's maximum

number of matched nodes.

Kalman criterion (Wu et al., 2018) Theorem 2 If

the matrix is NNM controlled,

W = [B, AB, … , AN×1B] (3)
The matrix must have full rank, or ank(W) must

equal N, in order for the system to be controlled.

Theorem 3: Theorem of structural controllability

(24). The system structure is manageable if the

networks don't have expansive structure or

unreachable nodes.

2.2. Network Controllability

A set of N dimensional vectors can be used in

complex networks to describe the state of a node at

a given time t (t) = (x1(t) … xN (t))T, expecting

that the node reach the system state x(t′) =
 (x1(t′) … xN(t′))T at moment t′. If nodes can inter-

couple to achieve the desired state, they can be said

to be controlled. A situation is uncontrolled if some

states are hard to achieve and the only way to

compel them is by inputting control signals from

the outside. according to Figure 1.

About the system equation

x′(t) = Ax(t) + Bu(t)

u(t) = (u1(t) … uM(t))T provides information

about the input control signal's condition at time t.

The adjacency matrix, or A, of the network's nodes

reflects their connectedness and degree of

interaction with one another. B is the input matrix

(MN), which explains how the nodes and control

signals are connected to one another.

One node's dynamics equation is

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1280

Figure 1: State space of nodes schematic diagram

The network is controllable if rank(W) = N,

satisfying the Theorem 2 in this case.

In general, a driver node for an input signal u(ti)

may be several. Making networks globally

controllable with the fewest possible input control

signals is the primary objective of network

controllability technology. This subject was

converted by (Jiang et al., 2018) into the lowest

number of driver nodes that the control network

needs, which fixes the main issue with network

control. The maximum matching nodes and

unmatched nodes in the directed graph should be

solved in accordance with Theorem 1 and Theorem

3. The mismatched nodes are driver nodes, as

indicated in Figure 2, and if all of the unmatched

nodes in the network are driven by a single direct

input signal, the entire network is fully

controllable.

Figure 2 shows a tiny network as an illustration (a).

The network is first turned into a bipartite graph

structure, as shown in Figure 2(b). By looking at

the greatest matching edge of this bipartite graph, it

can be observed that v2, v3, v4, and v5 are

matching nodes whereas v1 is an unmatched node,

or a driving node. Figure 2 depicts the controlled

state in detail (d). In order to manage the status of

every node in the whole network, version 1 makes

every node accessible.

3. Software networks' ability to be controlled

3.1 Class-Level Software Network Extraction

To get structural data, one must first analyse the

programme source codes. Classes are the most

fundamental components of object-oriented

software, as seen in Figure 3(a), for instance.

Software source code classes are represented as

nodes in networks and class interaction

relationships as edges. As shown in Figure 3(b),

the class diagram must first be obtained in the

software system before being abstracted into a

network model (c).

3.2. Software Networks in a Controllable Mode

The majority of actual systems can be driven by

nonlinear processes in practise, yet in many ways,

such as structure, the controllability of nonlinear

systems is remarkably comparable to that of linear

systems. Every complex network may be dealt with

using the controllable condition of the Kalman

criteria, which can also be used to deal with the

majority of nonlinear systems.

Figure 2: The process of creating driven node sets: Network topology, corresponding bipartite diagram,

maximum matching edge set, and controllable state of the networks are all included.

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1281

Figure 3: Network topology, a portion of the source code, and a class diagram are all examples of software

networks.

Software engineering holds that class modules in

object-oriented software structures should be

thought of as nodes in a network, and calling

behaviours between classes should be thought of as

edges, creating software networks. Yet,

communication and interaction among nodes are

regulated and controlled processes. In order for the

software system to function reliably across a range

of application domains, measure and manage the

software network topology from a macro

viewpoint. Consequently, an essential issue in

software network structure management is how to

regulate network topology with cheap cost and

great efficiency.

It has been proven that the Source-Driver (SD)

model, which is based on an examination of the

control process of complex networks, may be used

to extract the SD model for the information

transmission process in the software network

architecture, as illustrated in Figure 4. It is

separated into the source layer and the driver layer.

Nodes are intended in two levels as controlled

targets. Nodes in layer are source nodes (control

nodes), sending control signals to other nodes on a

selective basis. Matching nodes and driving nodes

are the nodes in layer. The control signals supplied

by the source nodes are immediately received by

the driver nodes, who subsequently broadcast them

to other nodes in the subnets at layer.

Figure 4: model SD

A directed controllable software network control

condition on the SD model is shown in Figure 4. If

there are three independent source nodes in layer,

S1, S2, and S3, they transmit control signals to the

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1282

network's driver nodes at layer in order to manage

the whole network. In addition, the signals

conveyed by the source nodes to other nodes in

layer are not entirely random, hence the production

of driving node sets in complex networks is not

singular. Contrary to other studies on the

controllability of large networks, the pairing of

driver nodes with other nodes in layer is

undoubtedly not entirely random. The

relationships, linkages, and information transfer

inside software networks are built on the calls and

dependencies between different software system

components. As a result, source nodes in software

networks selectively send control signals to the

nodes in layer on SD model to service them.

Clearly, more than one source node may control a

driver node, and the more driver nodes a source

node has control over, the more powerful their

influence over the entire network is.

Under the SD model, source nodes communicate

directly with driver nodes; in contrast to large

networks, this reduces the number of driver nodes,

which may be managed to control the whole

network. As a result, software will have lower

maintenance costs and more accurate

measurements.

4. Observational Studies

Center-degree is a distinctive measure for

identifying core nodes in object-oriented software

networks, which are situated in the centre and have

the biggest impact on the overall network. Degree

in the structure of a software system indicates the

reciprocal call patterns between local modules and

reflects connections with nearby nodes. The direct

control and being controlled states among distinct

modules are represented by out-degree and in-

degree. In light of the SD model framework, the

degree distribution characteristic and the size of the

driver node set in software networks are strongly

associated.

To conduct the trials, choose 10 distinct software

scales made with object-oriented programming

languages like C++ and Java. Table 1 displays their

fundamental network topology statistics after being

extracted into software networks for various sizes.

Compile statistics on the attributes of software

networks, including the driver node ratio, average

out-degree, average degree, and average degree.

Figure 5 displays their findings.

Figure 5 makes it intuitively clear that the average

degree values of various software are all low,

indicating that the majority of nodes have low

degrees and that all software networks have

average in-degrees that are higher than average

out-degrees. With the exception of MySQL, all

other software networks' average out-degrees are

essentially the same as their average degrees, but

for all of them, the average center-degree is the

lowest. It illustrates how the software's module

designs and interactions lessen overall complexity.

All software networks have a driver node ratio of

around 0.5, which is somewhat higher than that of

other complicated networks. As illustrated by the

computed results shown in Figure 4, one of the

primary objectives of software design at the outset

is to minimise the complexity of the software

structure. Since the degree values of the majority of

nodes in software networks are typically low,

driving nodes and matching nodes will be

generated here. On the other hand, the calling

relationships (connection edges) between modules

inside the software structure will increase if degree

values are high for the majority of nodes. We may

get the conclusion that nodes with low degree

values typically make up the driving node sets. The

better driver node is therefore not highly valued

from the standpoint of control costs, which is

essentially consistent with the literature's finding.

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1283

Figure 5: Topological software network statistical characteristics

Table 1: The dimensions of computer networks

Firefo

x

Mys

ql

Jedi

t

Freetyp

e

Eclips

e

Dovec

ot

Abiwor

d
Vuze

Openma

p
Kaffe

Firefo

x

Mys

ql

N
10,11

6
3457 930 358

17,60

4
371 1300 3678 1932 7849

10,11

6
3457

L
29,67

2
5480

335

9
387

32,71

8
729 2117

10,52

5
4518

12,12

0

29,67

2
5480

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1284

Figure 6: Relationship between centrality and distribution

A node's importance and controlling force,

however, cannot be entirely explained by a degree

indication. Nodes of intermediate degree or high

degree can still be detected in the driver node sets,

despite the possibility that there may be a large

number of low degree nodes present. The degree

distribution of nodes in software networks, like

scale-free networks, complies with the power-law

distribution. Lowering the degree value prevents

the software system structure from being

unnecessarily complicated. The attributes of a node

itself should be taken into account while choosing

driver node sets. Center-degree (Definition 3) is an

indicator used in software networks to assess the

significance and effect of nodes. The closer it is to

the core location, which is the centre of the

networks, the higher its value. According to Figure

6.

To examine the link between degree and center-

degree of nodes in network architecture, use ten

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1285

distinct software scales. Take the double

logarithmic coordinates of Figure 6 to observe

clearly. The six software networks may be

observed to have nodes of three different types: 1)

High degree and center-degree nodes, with a

maximum of 5 of these nodes in software

networks. They often serve as core nodes and carry

out the major operations of the software systems.

2) Nodes having a high center-degree but a low

degree. Even though these nodes are a part of the

software system's primary functional modules, they

have simple constructions. The login screen in a

typical software system is an example of this type

of module. Nodes with low and middle degrees are

number three. The majority of these nodes are

equivalent to the fundamental components that

software systems use to carry out some

fundamental tasks, and the logical compositions of

these modules are straightforward. Although it may

be deduced that nodes with high center-degrees

must also have high degrees, the converse may not

be true, meaning that high center-degree nodes do

not necessarily have high degrees. As a result, the

first kind of nodes is the main factor to be taken

into account while choosing the driver node sets.

The control extent of nodes is directly connected to

their in-degree and out-degree when combined

with the SD model. The driver nodes classify the

incoming control signals using the in-degree

indication and the output signals using the out-

degree indicator. Hence, in-degree and out-degree

have an impact on driver node actions together.

The link between the in-degree and out-degree of

nodes must thus be examined. These 10 software

networks' orphan nodes and leaf nodes are

dislodged, and the distribution diagram is then

drawn using double logarithmic coordinates, as

illustrated in Figure 7.

It is clear that most nodes in directed software

networks exhibit a linear relationship between their

in-degree and out-degree, whereas a few nodes

exhibit deviation. This is also the reason why nodes

in software networks often have low degrees. Also,

the matching process between nodes is slowed

down by the nodes in a tiny region below the

straight line. A software system's design might

reveal some intriguing patterns if you look closely.

Figure 8 illustrates the network topology of Firefox

as an example.

The degree value of each node is represented in the

depicted diagram by its size, with different colours

denoting different degrees. The greater the size of a

node, the higher the degree value. The graph

illustrates the concept of local aggregation. A few

nodes are linked to them. Also, it demonstrates that

most nodes' degree values are tiny, demonstrating

that nodes with little degree values prefer to engage

with nodes with big degree values.

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1286

Figure 7: Relationship between in- and out-degree distribution

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1287

Figure 8: Firefox's software network topology

Table 2: Comparison of Firefox software network's defining characteristics

Node number Node name din dout d C

5784 “nsISecurityPref” interface 1797 1797 0 0.1439

3507 “nsCOMPtr” class 1233 1223 10 0.1232

4611 “nsICSSPseudoElement” class 3 2 1 0.1231

4364 “nsHypotheticalBox” struct 410 398 12 0.0978

568 “already_AddRefed” struct 143 143 0 0.0487

6951 “nsRefPtr” class 347 203 144 0.1095

9999 “XPCWrappedNativeScope” class 15 3 12 6E-06

Compare the in-degree din, out-degree dout, degree

d, and center-degree C of the six specific nodes

you have chosen, which are presented in Table 2.

This leads to the discovery that the Node 5784 has

the biggest center-degree value, but that its in-

degree value and out-degree values are also the

largest. In addition, its degree value is zero, which

is an extreme case. The Node 4611, on the other

hand, has the largest center-degree value despite

having the smallest in- and out-degree values.

These studies lead to the conclusion that control

behaviours and states should be measured in terms

of the in-degree and out-degree of nodes since

degree values cannot accurately capture the

scenario of sending and receiving signals among

nodes in directed networks. In other words, in-

degree and out-degree are crucial considerations

while choosing the driver node sets.

5. Conclusions

People are constantly interested in researching the

control challenge of complicated networks. The

practical value of scientific research lies in

expanding the application field, notwithstanding

the continual abundance of theoretical research

findings. The structural complexity of software

networks may be measured from a novel angle by

integrating control theory with software networks.

This study has studied the controllability of

software networks in this manner.

The choice of the driver node sets has a significant

impact on the effectiveness of network control. In

order to study the control procedure of software

network topology, the SD model with two layers is

constructed in this method. Based on it, the

relationship between degree and center-degree as

well as the topological features of software

networks are analysed, and the findings show that

while the majority of driver node sets tend to be

made up of nodes with a low degree, nodes with

Section A-Research paper

Study on Software Network Controllability Using

the Source-Driven Model

Eur. Chem. Bull. 2023, 12 (S3), 1277 – 1288 1288

high center-degree should be given priority to take

into account. After thoroughly exploring the

software system structure, the correlation between

in-degree and out-degree is then examined, and the

four metrics are condensed. It is discovered that,

despite some nodes' very small degree values, their

in-degree and out-degree values are significantly

different, and as a result, their center-degree values

can change. As a result, such nodes should be

carefully monitored when managing the software

network structure. The crucial variables in node

management are particularly in-degree and center-

degree.

The controllability of software networks is still a

very active area of study. To maintain the reliable

and secure functioning of software, future research

will focus on the topological properties of the

driver node sets in the software network and their

information transfer.

6. References

Guan-Rong, C. (2013). Problems and challenges in

control theory under complex dynamical

network environments. Acta Automatica

Sinica, 39(4), 312–321.

Jiang, D., Huo, L., & Song, H. (2018). Rethinking

behaviors and activities of base stations in

mobile cellular networks based on big data

analysis. IEEE Transactions on Network

Science and Engineering, 7(1), 80–90.

Li, H. (2020). H∞ group consensus for partial-state

coupled linear systems with fixed and

switching topologies in the cooperation-

competition networks. Journal of the Franklin

Institute, 357(1), 314–342.

Li, P., Zhao, H., Qiao, Y., Liu, Z., Li, H., & Li, B.

(2010). A platform of software network

measurement design and implement. 2010 2nd

International Conference on Advanced

Computer Control, 2, 336–339.

Liu, S.-L., & Pang, S.-P. (2020). Effect of degree

correlation on edge controllability of real

networks. Chinese Physics B, 29(10), 100202.

Ma, Y.-T., He, K.-Q., Li, B., Liu, J., & Zhou, X.-Y.

(2010). A hybrid set of complexity metrics for

large-scale object-oriented software systems.

Journal of Computer Science and Technology,

25(6), 1184–1201.

Pan, H., Zheng, W., Zhang, Z., & Lu, C. (2019). 软

件网络分形结构特征研究 (Study on Fractal

Features of Software Networks). 计算机科学,

46(2), 166–170.

Pan, W.-F., Jiang, B., & Li, B. (2013). Refactoring

software packages via community detection in

complex software networks. International

Journal of Automation and Computing, 10(2),

157–166.

Pósfai, M., Liu, Y.-Y., Slotine, J.-J., & Barabási,

A.-L. (2013). Effect of correlations on network

controllability. Scientific Reports, 3(1), 1–7.

Tian, H., Meng, X., Hu, N., Wang, Y., & Yang, T.

(2022). Research on the Controllability of

Software Networks Based on the Source-

Driven Model. Journal of Computer and

Communications, 10(8), 26–40.

Wang, J., Zhang, K., Sun, X., Tan, Y., Wu, Q., &

Wu, Q. (2019). Package network model: a way

to capture holistic structural features of open-

source operating systems. Symmetry, 11(2),

172.

Wu, J., Dong, M., Ota, K., Li, J., & Guan, Z.

(2018). Big data analysis-based secure cluster

management for optimized control plane in

software-defined networks. IEEE Transactions

on Network and Service Management, 15(1),

27–38.

Yuan, Z., Zhao, C., Di, Z., Wang, W.-X., & Lai,

Y.-C. (2013). Exact controllability of complex

networks. Nature Communications, 4(1), 1–9

