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Abstract. The second-order half-linear neutral delay difference equation obtains some improved oscillatory solutions in 

this research. ∆  𝛼 𝜇  ∆𝛽 𝜇  
𝛿
 + 𝛾 𝜇 𝛽𝛿  𝜇 − 𝜎 = 0,                             𝜇 ≥ 𝜇0, 

where𝛿 > 0is an odd positive integer quotient. Our findings in this work are crisp and improved on some of the 

literature's well-known oscillatory results. Some examples are provided to highlight our primary findings.2020 

Mathematics Subject Classifications: 39A12, 39A21. 

1. INTRODUCTION 

The oscillation and non-oscillation of solutions of differential equations has piqued researchers' curiosity in 

recent years. The oscillation of the second order half-linear neutral delay difference equation is the focus of this 

research. 

∆  𝛼 𝜇  ∆𝛽 𝜇  
𝛿
 + 𝛾 𝜇 𝛽𝛿 𝜇 − 𝜎 = 0,                             𝜇 ≥ 𝜇0,   (1.1)    

 

where∆signifies the forward difference operator ∆𝛽 𝜇 = 𝛽 𝜇 + 1 − 𝛽 𝜇 for any sequence {𝛽 𝜇 }of real 

numbers. We will assume the following throughout this paper: 𝜎 is a fixed nonnegative integer,𝛿 > 0 is the of odd 

positivequotient integers, {𝛼(𝜇)}𝜇=𝜇0
∞ and {𝛾(𝜇)}𝜇=𝜇0

∞ are both fixed nonnegative integers. are real-number sequences 

in which𝛼 𝜇 > 0, 𝛾 𝜇 > 0 and  {𝛾(𝜇)}𝜇=𝜇0
∞ each have a positive subsequence, and 

  
1

𝛼 𝜇 
 

1

𝛿
∞

𝜇=𝜇0

= ∞,                                                                                                 (1.2) 

 

  
1

𝛼 𝜇 
 

1

𝛿
∞

𝜇=𝜇0

< ∞,                                                                                                (1.3) 

 

A nontrivial sequence{𝛽 𝜇 } that is defined for 𝜇 ≥ −𝜎 and satisfies equation (1.1) for 𝜇 = 0, 1, 2,3 ···is referred 

to as a solution of (1.1). Obviously, if 

 

𝛽 𝜇 = 𝑋 𝜇 𝑓𝑜𝑟𝜇 = −𝜎, … , −1, 𝜇0 − 1,                                                                                  (1.4) 
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If the initial parameters are established, then (1.1) has a unique solution that satisfies (1.4). A solution{𝛽 𝜇 }of 

(1.1) is considered to be oscillatory if there exists an𝜇 ≥ 𝜇1 such that 𝛽 𝜇 , 𝛽 𝜇 + 1 ≤ 0 for every 𝜇1 > 𝜇0. 

Otherwise, it's referred to as nonoscillatory. Equations that are half-linear and have the form as 

 

∆  𝛼 𝜇  ∆𝛽 𝜇  
𝛿
 + 𝛾 𝜇 + 1 𝑎𝛿 𝜇 + 1 = 0,                   𝜇 = 0, 1, 2, 3 … ,       (1.5)    

 

The studies of Agarwal [2,6], Zhang [5], Dinakar et al. [7], Thandapani et al. [3,4], Gopalakrishnan [8], [15] and 

Murugesan [9], [14]have received a great deal of attention in the literature in recent years. In several of the articles 

cited above, Riccati equations of various forms are used to derive oscillatory solutions that ensure that every 

nontrivial solution is oscillatory or nonoscillatory. 

 

We create some unique oscillatory solutions and Kamanev-type oscillation conditions for using Riccati 

transformation techniques (1.1). In Section 2, we examine at the scenario where (1.2) and (1.3) holds and develop 

certain necessary and sufficient conditions for all solutions of to oscillate (1.1). In Section 3, we construct certain 

necessary conditions that ensure that any solution {𝛽 𝜇 }of (1.1) oscillates.  Our results extend and enhanceSaker 

[13]andThandapani et al. [10], [11]. The major findings are illustrated with few examples. 

2. MAIN RESULTS OF OSCILLATION 

In this section, we examine at the condition where (1.2) holds and define the necessary criteria for all solutions to 

oscillate (1.1). First, we consider all possible solutions (1.1). 

 

Theorem 2.1.Let us consider 𝛿 > 0 and∆𝛼 𝜇 ≥ 0 be an eventually positive solution of (1.1). If every solution 

of the neutral delay difference equation. 

 

∆𝜑 𝜇 +
𝛾 𝜇 

𝛼 𝜇 − 𝜎 
 
𝜇 − 𝜎

2
 
𝛿

𝜑 𝜇 − 𝜎 = 0,      𝜇 ≥ 𝜇1 ≥ 𝜇0 2.1  

 

oscillates, without loss of generality every solution of (1.1) oscillates for all 𝛿 > 0. 

 

Proof. Let us assume{𝛽 𝜇 }is a finally positive solution to the problem (1.1). 

such that 𝛽 𝜇 > 0and 𝛽 𝜇 − 𝜎 > 0for all 𝜇 ≥ 𝜇1 ≥ 𝜇0. Therefore 𝜑 𝜇 = −𝛽 𝜇 transforms(1.1).  From (1.1) 

we have  

∆  𝛼 𝜇  ∆𝛽 𝜇  
𝛿
 = −𝛾 𝜇 𝛽𝛿 𝜇 − 𝜎 = 0,                             𝜇 ≥ 𝜇1,       (2.2)    

 

and so 𝛼 𝜇  ∆𝛽 𝜇  
𝛿
 is an eventually nonincreasing sequence. Clearly,𝛼 𝜇  ∆𝛽 𝜇  

𝛿
is eventually positive. 

Indeed, since{𝛾(𝜇)}𝜇=𝜇0
∞  has a positive subsequence and the non-decreasing sequence {𝛼 𝜇  ∆𝛽 𝜇  

𝛿
}is either 

eventually positive. If an integer exists𝜇2 ≥ 𝜇1such that 𝛼 𝜇2  ∆𝛽 𝜇2  
𝛿

= 𝑘 < 0for 𝜇 ≥ 𝜇2, then (2.2) implies 

that 𝛼 𝜇  ∆𝛽 𝜇  
𝛿

≤ 𝛼 𝜇2  ∆𝛽 𝜇2  
𝛿

= 𝑘, hence 

∆𝛽 𝜇 ≤  𝑘 
1

𝛿  
1

𝛼 𝜇 
 

1

𝛿

, 

Such that 

𝛽 𝜇 ≤ 𝛽 𝜇2 + 𝑘 
1

𝛿   
1

𝛼𝑖

 

1

𝛿

𝜇−1

𝑖=𝜇2

→ −∞𝑎𝑠𝜇 → ∞ 2.3  

Which is a contradictionof𝛽 𝜇 > 0. Hence 𝛼 𝜇  ∆𝛽 𝜇  
𝛿
is eventually positive. Therefore, we see that there is 

some 𝜇1 ≥ 𝜇0such that. 

 

𝛽 𝜇 > 0, ∆ 𝛽 𝜇 ≥ 0, ∆  𝛼 𝜇  ∆ 𝛽 𝜇  
𝛿
 ≤ 0,                    𝜇 ≥ 𝜇1,                       (2.4) 
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From (2.4), since ∆  𝛼 𝜇  ∆ 𝛽 𝜇  
𝛿
 ≤ 0, then we have ∆2𝛽 𝜇 ≤ 0 for 𝜇 ≥ 𝜇0. If not there exists 𝜇2 ≥ 𝜇1such 

that ∆2𝛽 𝜇 > 0and this implies that∆ 𝛽 𝜇 + 1 > ∆ 𝛽 𝜇 , so that since ∆𝛼 𝜇 ≥ 0, 𝛼 𝜇 + 1  ∆ 𝛽 𝜇 + 1  
𝛿

>

𝛼 𝜇 + 1  ∆ 𝛽 𝜇  
𝛿

≥ 𝛼 𝜇  ∆ 𝛽 𝜇  
𝛿
andthis contradicts the fact that {𝛼 𝜇  ∆ 𝛽 𝜇  

𝛿
}is nonincreasing sequence. 

Then ∆2𝛽 𝜇 ≤ 0,whichimplies that 𝛽 𝜇 − 𝛽 𝜇1 =   ∆𝛽(𝑐) ≥ (𝜇 − 𝜇1)
𝜇−1
𝑐=𝜇1

∆ 𝛽 𝜇 which leads to𝛽 𝜇 ≥
𝜇

2
∆ 𝛽 𝜇  for 𝜇 ≥ 𝜇2 ≥ 2𝜇1 + 1. Such that, 

 

𝛽 𝜇 − 𝜎 ≥
𝜇 − 𝜎

2
∆𝛽 𝜇 − 𝜎 ,   𝜇 ≥ 𝜇3 = 𝜇2 + 𝜎                                                      (2.5) 

 

Hence, from (2.5) and (1.1), we have  

 

∆  𝛼 𝜇  ∆ 𝛽 𝜇  
𝛿
 + 𝛾 𝜇  

𝜇 − 𝜎

2
 
𝛿

 ∆𝛽 𝜇 − 𝜎  
𝛿

≤ 0,   𝜇 ≥ 𝜇3                       (2.6) 

 

Set 𝜑 𝜇 = 𝛼 𝜇  ∆ 𝛽 𝜇  
𝛿

, then 𝜑 𝜇 > 0 and satisfies 

 

∆𝜑 𝜇 +
𝛾 𝜇 

𝛼 𝜇 − 𝜎 
 
𝜇 − 𝜎

2
 
𝛿

𝜑 𝜇 − 𝜎 ≤ 0,      𝜇 ≥ 𝜇3 2.7  

 

As a result, the neutral advance delay difference equation (2.1) has an eventually positive solution, which is the 

contradiction of the assumption that (2.1) has an oscillating solution. Then every (1.1) solution is oscillatory.  

 

Corollary 2.1.Assume that (1.2) holds. Additionally, if there exists a positive sequence {𝜔(𝜇)}𝜇=0
∞ such that for 

all 𝜌 ≥ 1, 

 

lim
𝑛→∞

sup
1

𝑛𝜌
  𝑛 − 𝜇 𝜌  [

𝑛−1

µ=0

𝜔 𝜇 𝛾 𝜇 −
𝜔 𝜇 + 1 2

4𝜔 𝜇        
𝐾𝑛,𝜇 ] = ∞                              (2.8) 

 

Then without loss of generality every solution of (1.1) oscillates for all 𝛿 ≥ 1. 

 

 

 

3. SOME APPLICATIONS OF OSCILLATORY SOLUTIONS 

Let us assume that (1.3) holds, and let {𝜔 𝜇 } be an eventually positive sequence. Then every solution of (1.1) 

oscillates orlog𝜇→∞ 𝛽 𝜇 = 0. The primary outcomes in this section are illustrated in the following examples. 

 

Example 3.1. Consider the second order half-linear neutral delay difference equation  

∆( 𝜇 + 1 2∆𝛽 𝜇 +  𝜓𝛽 𝜇 − 1 = 0,    𝜇 ≥ 1,                                                                                (3.1) 

where 𝜓 > 1/4. Then, 𝛼 𝜇 =  𝜇 + 1 2, 𝛿 = 1and 𝜎 = 1. If we take𝜔 𝜇 = 𝜇, then one can easily see that 

(3.1) holds, and 

  𝑍𝛾 𝑧 −
𝛼(𝑧 − 1)( 𝑍 − 1 −  𝑧 )2

4𝑧
 

𝜇

𝑧=𝜇 0

=   𝜓𝑧 −
𝑧2

4𝑧
 

𝜇

𝑧=1

=   
 4𝜓 − 1 𝑧

4
 

𝜇

𝑧=1

→ ∞ 

as 𝜇 → ∞. Thusevery solution of (3.1) oscillates or 𝛽 𝜇 →  0as 𝜇 → ∞. 
 

Example 3.2.Consider the following second order half-linear neutral advance delay difference equation 

∆2(𝛽 𝜇 − 1 +
1

 𝜇
𝛽 𝜇 − 2 +

𝜓

𝜇2
𝛽 𝜇 − 1 = 0,       𝜇 ≥ 1,                                                (3.2) 
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𝜓 > 0is a constant. 

lim
𝑛→∞

sup
1

𝑛𝜌
  𝑛 − 𝜇 𝜌  [

𝑛−1

𝜇 =0

𝜔 𝜇 −
 𝜇 + 1 2

4𝑍 𝜇       
] = ∞                                                                (3.3) 

where 

𝜔 𝜇 =
2 + (4𝜓 − 1)𝜇

4𝜇(𝜇 + 1)
−

𝜓

 (𝜇 + 1)3
 

which implies  

lim
𝑛→∞

sup
1

𝑛2
 µ

𝑛−1

µ=0

  𝑛 − 𝜇 2  
2 +  4𝜓 − 1 𝜇

4𝜇 𝜇 + 1 
−

𝜓

  𝜇 + 1 3
 −

 𝜇 + 1 2

𝜆 + 1
 

= ∞                                                                                                              (3.4) 

If 𝜓 > 1/4, then every solution of equation (3.4) is oscillatory. 
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