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Abstract: Background: Services running on low-cost hardware generally enabled by cloud data centers 

(CDC). Scaling the hardware horizontally is made simple by the addition of more resources. The CDC 

uses commodity hardware, which results in a high failure rate for physical servers (PSs). As a result of 

this failure, virtual servers (VSs) were provisioned on the failed PS. Hence the fault tolerance is a major 

challenge for cloud service providers.  

 

Objective: To handle failures of commodity hardware in CDC, there is need of fault tolerance method. 

The motive of this work is to develop an optimal and efficient failure recovery methodology based on 

checkpointing for fault tolerance of cloud-based services. 

 

Methods: the proposed approach is implemented in two steps. In the first step, we build a virtual 

backbone across the CDC network architecture; the research suggests a novel Connected Dominating 

Set (CDS) based method. The PSs serve as the vertex of the graph used in the CDS creation approach to 

represent the network topology. In order to obtain a CDS or optimal number of PS for the topology 

graph, it then suggests a set of criteria based on the rate of CPU heating, storage capacity, and vertex 

degree of PSs. Moreover, This base is then used to create a fault tolerant system based on checkpointing 

and rollback recovery (CRR) in order to increase reliability.  

In the second step, A CDSCKP method is proposed. In which we have implemented uncoordinated 

checkpointing with message logging while taking into account distributed applications. Checkpoint 

snapshots of tasks or VSs are placed on the CDS vertices.  

 

Results: The suggested scheme's effectiveness is assessed using parameters such as recoverability, 

bandwidth and power consumption and rollback and recovery time. The CDSCKP is compared with a 

Random checkpointing placement protocol (RCKP), Wu-Li checkpointing placement protocol 

(WLCKP). The simulation results show that the CDSCKP offers greater recoverability, uses less 

bandwidth and power, and has little rollback and recovery overhead. 

 

Conclusion: In order to increase the dependability of VS-based services, this study suggests a CDS-

based scheme for building a virtual backbone over the DCN topology. This scheme is then used to 

produce a CRR-based fault tolerance scheme called CDSCKP. 
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1. INTRODUCTION 
 
Cloud computing (CC) is increasingly being used as a 
platform for executing large-scale workloads such as 
scientific workflow execution, big data processing, analytics 
applications, and so on. This form of computing provides so 
many advantages such as on-demand scalability, resource 
provisioning elasticity, and massively parallel processing 
design. CC provides different kinds of services to the end 
users i.e., Software as a Service (SaaS) provides web-hosted 
applications to users such as email, security, social media 
applications, and so on; Platform as a Service (PaaS) 
provides computing platforms to end-users such as operating 
systems, compilers, and so on; and Infrastructure as a 
Service (IaaS) delivers computing infrastructure to users 
over the internet such as virtual servers, storage, and 
networking. [1][2]. 
 
The proposed work primarily focuses on the IaaS, which 
provides cloud customers with access to a data centre’s 
computational capacity. Virtualization technology is used in 
IaaS to provide resources to users from faraway IaaS 
datacentres [3]. Thousands of real machines are housed in a 
data centre, which can host VSs for users dependent on their 
needs. The widespread use of the CDC for hosting corporate 
or enterprise applications, on the other hand, may result in 
service reliability hitches. Because of their distributed 
structure, vast scale of operation and variety of commodity 
technology, a variety of problems emerge in cloud systems, 
resulting in failures, outages, and decreased performance. 
Some of the cloud outages are discussed in Table 1.  
Fault tolerance (FT) strategies can be used to handle failures 
in the cloud environment. Even if some system components 
aren't working properly, FT allows the system to serve user 
requests [4] [5]. CRR and replication are the most often 
utilized FT techniques. Replication based on the presence of 
redundant resources and makes multiple copies of a task or 
resource [6]. If a task or resource fails, its copy can be 
employed to keep operations running. CRR, on the other 
hand, is a technique for regularly saving the state of systems 
during normal operation. The system is resumed from a 
previously saved error-free state in the event of a failure 
[7][8]. 
 
 
Table 1. Cloud Providers Outages in 2022 

 

Cloud 

Service 

Provider 

(CSP) 

Outage Explanation Year 

Google cloud 

A modification was made to 

the Traffic Director code 

that manages the 

configuration. 

March-

2022 (2 

hours) 

 

Microsoft  Mail Related  

Afterward a day, in which 

Microsoft added new 

security capabilities to 

secure office 365 users, the 

failure happens. 

2022 

Cloudflare  internet 

 

Created significant 

downtime on a significant 

portion of the Internet, 

purportedly affecting well-

known websites including 

Discord, Shopify, Grindr, 

Fitbit, and Peloton. 

June - 

2022 

Microsoft 

Azure 
power 

 

A sudden power fluctuation 

in one of our data centres, 

inside one of our 

Availability Zones, in the 

East US 2 regions. 

 

June-

2022 

Facebook 

Workplace 

collaboration 

tool 

A server problem led to the 

outage that hit Facebook and 

Instagram. 

 

2022 

Apple  Cloud 

Some customers are unable 

to access their iCloud 

accounts. 

January 

- 2022 

IBM Cloud 

Users of IBM Cloud 

services in the Dallas region 

were impacted. 

January 

– 2022 

(Less 

than an 

hour) 

Salesforce Slack 

Some users are having 

issues loading Slack. 

 

2022 

Mimecast  

 
power 

Due to a "severe power 

outage," its North American 

grid experienced issues, 

which resulted in delays and 

"degraded service" for 

consumers. 

2022 

 
The current study proposes a CRR FT mechanism for the 
enhancing the reliability of cloud-based services. The 
suggested mechanism creates a CDS over the graph that 
represents the topology of a CDC. The PSs are the graph's 
vertex, while the links between them are the graph's edges. 
The CDS building standards were created with factors 
specific to data center PSs in mind. The CDS is used to build 
a virtual backbone across the data center network topology 
and place checkpoint snapshots of tasks or VSs. In case of 
failure, the last saved checkpoint is used to start the 
application. Simulation experiments have found keeping 
checkpoint images of task using CDS is more reliable, cost-
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effective, and energy-efficient as compared to a RCKP and 
WLCKP. 
 
This paper's main contribution is as follows: 
 
 A CDS-based backbone for DCN topology is proposed. 

 
 To acquire the CDS and to achieve optimal number of 

PS for the topology graph, developed some rules based 
on CPU heating rate, storage capacity, and vertex degree 
of a PSs. PSs with a lower CPU heating rate are thought 
to be more reliable vertices. The CDS is formed up of 
vertices with better storage capacity and vertex degrees. 

 
 Moreover, a CRR based FT protocol such as CDSCKP 

was implemented using the CDS backbone. 
 
 Finally, we have measured the performance of the 

suggested approach in terms of recoverability, 
bandwidth usage, power consumptions, and rollback and 
recovery times. 

 
The remainder of the paper is structured as follows: In 
Section II, the associated strategies for CRR-based FT in CC 
are described. The CRR process is explained in Segment III. 
The anticipated CDS over CDN topology for storing 
checkpoint snapshot with messages is covered in Section IV. 
In Section V, it is addressed how well the suggested method 
works and the outcomes of the simulation. Section VI is 
where we finally put an end to our presentation. 
 

2. RELATED WORK 

In cloud-based services, FT is a major concern. In the 

presence of some defective system components, FT 

approaches allow the system to deliver important services 

with greater performance [1]. System errors may be caused 

by either software or hardware (H/W) issues, FT techniques 

are necessary to detect and handle them. Checkpointing, 

replication, and task migration are the most utilized 

strategies for fault tolerance of VSs in IaaS cloud computing, 

according to the literature [4][5]. 

 

In [9] a checkpointing-based FT mechanism was used to 

increase the resilience of server-based cloud applications. A 

CRR strategy for a CDC was devised by J. Zhao et al. [8]. A 

peer-to-peer CRR approach is used in their scheme, in which 

a VS's CP snapshot is kept on a nearby or peer host PS. The 

suggested solution eliminates the need for dominant memory 

in situations where network congestion affects whole host 

PSs and VSs. The authors also showed that using a 

distributed way to produce speedier checkpoints and 

recovery is a good idea. A. Zhou et al. [7] have suggested 

using the EDCKP checkpoint FT system in data centres’ fat-

tree topologies to tolerate host, PS, and edge switch failure. 

The checkpoint snapshots of the VS are installed or located 

on the PS in the same pod in this method. This strategy seeks 

to ensure CC-based service reliability while also reducing 

network resource consumption. Chinnathambi, et al. [10] 

offered a scheduling technique for keeping track of the 

performance of the virtual node and a useful checkpointing 

method for accommodating task and job migration with the 

least amount of overhead. The proposed technique, 

according to the authors, effectively recognizes VS flaws and 

frequently migrates the job to a functional VS. Amoon et al. 

[11] proposed a fault tolerance strategy based on 

checkpointing with a variable or changeable checkpoint 

interval. On the other hand, the percentage of servers that 

cannot accommodate the VS that is used to finish the 

application determines how long the interval for that 

application will be. Cheraghlou et al. [12] developed a 

framework for fault tolerance in a cloud-based environment 

based on fuzzy logic. A fuzzy system's design is built on 

three features: policies, fault detection techniques, and fault 

recovery techniques. An adaptive method was put out by 

Rezaeipanah, et al. [13] for quickly identifying cloud system 

faults. In order to achieve this, the authors used a predictive 

technique to keep an eye on the system before using a fuzzy 

logic-based algorithm to find the weaknesses. They also 

employed the checkpointing approach to cut down on 

processing costs and migration time. In [14], the authors 

have used fat tree topology based checkpointing approach to 

execute both bag of task application and distributed 

application.  

 

Further, many works have emphasized that any FT 

scheme (or any other algorithm) does not add a significant 

overhead to the energy requirements of the cloud computing 

infrastructure [15][16]. Considering the need to lower the 

energy demands of a CDC, it is desired that any algorithm 

execution consumes low bandwidth and thus, low energy.  

 

It is assumed that an efficient topology of a data center 

can contribute to this requirement. Therefore, many 

topologies, such as a fat tree, RUFT (reduced unidirectional 

fat-tree) and Z-fat tree have been suggested in the literature 

[17] [18]. Our work proposes a CDS based topology for a 

data center that has been designed for the fault-tolerant 

service execution. CDS have been often used for virtual 

backbone construction in networks. R. Kanniga Devi et al. 

[19] presented a theoretical model based on the dominating 

set. This model illustrated that the graph with the DS may 

tolerate faults as well as deliver improved load balancing by 

decreasing network overhead. In [20] [21], the authors have 

suggested a distributed marking system to find CDS in a 

completely connected graph.  
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3. PREFACES 

By recovering the computation to the most recent 

checkpoint, CRR is a well-liked FT technique for 

minimizing the amount of computation lost when a process 

fails. The stable storage device, a logical device that can 

endure the most system faults, where the programs record 

their checkpoints during the failure-free operation. The CRR 

and stable storage processes, which combine checkpointing 

and application execution, can enhance application 

performance. [7][8][9]. The CRR method is illustrated in 

Fig. 1. 

 

 
Fig. (1). Task/VS checkpoint and rollback recovery model 

 

The states of each process that makes up the system are 

combined to form the global system state. The status of a 

process can be routinely recorded using the CRR technique 

as a checkpoint that can be restored in the event of a 

successful recovery failure. However, because message flow 

between processes may have developed inter-process 

dependencies, rolling back one process could result in an 

inconsistent system state. To maintain a consistent global 

state in this scenario, reverting one process may result in 

reverting other, fault-free processes as well. Consistent 

global states are those that represent a state that may have 

been attained throughout execution [8][22]. 

 

The global state Gi is said to exist in a system if there are n 

processes. 

    
1

1 , : ( ) ,
k

i p p q
p

i N i G LS RM m LS SM m LS p q


 
          

 

 

 

The send message event is SM, and the local state logged at 

process p is LSp. 

RM represents the receive message event. 

A compilation of the local states from each process results in 

the global state, or Gi. 

 

Orphan messages are those whose sending was not recorded 

by the sender but whose receipt has been logged by the 

recipient. There are no orphan messages that are in a stable 

state. 

 

This work focuses on distributed applications, which are 

composed of multiple processes or tasks that communicate 

via messages in order to finish the distributed program [23]. 

A system must get back to a consistent state after a process 

failure. The communication between processes must 

therefore be recorded using the CRR approach. Coordinated 

checkpointing, where processes synchronize or coordinate 

their checkpoints in order to save a globally consistent 

system state, is one technique for achieving global 

consistency. Because each process continues where it left off 

from its most recent checkpoint, this strategy facilitates 

recovery [23][29][30]. As a result, the scope of rollback is 

constrained and a domino effect, or rollback to the prior 

system state, is avoided. Conversely, because all processes 

must take part in each checkpoint action, coordinated 

protocols are inappropriate for usage in large-scale systems 

because they significantly increase synchronization costs and 

delay. 

 

Since each process can choose when to take a checkpoint, 

asynchronous or uncoordinated checkpointing is preferable 

to coordinated checkpointing. As a result, there is no need 

for synchronization, and each process can choose the 

location and timing of its checkpoints [23] [24]. 

Uncoordinated checkpointing, on the other hand, could start 

a chain reaction that spreads throughout the recovery process 

and costs a large amount of productive labor. Each process 

must maintain various checkpoints, and if one fails, multiple 

processes must rollback.  

 

To enable independent checkpointing and process recovery, 

this study uses CDSCKP, a log-based uncoordinated 

checkpointing technique. Each process's current state is 

periodically captured as a checkpoint, and each message it 

receives afterward (before to the next checkpoint) is 

recorded in a message log. The checkpoints and the 

messages that have been recorded are kept in a safe place. 

When a system process fails, it may still be running and 

replay the message log from the most recent checkpoint. 

This makes it possible for the process to reach its pre-failure 

state on its own, without the aid of other processes. 

[14][22][23]. The log-based recovery technique is depicted 

in Fig. 2.  
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Fig. (2). Log-based Recovery process 

 

The determinants needed to repeat messages m0, m5, m1, 

m3, m6, and m2, m4 during the failure-free activity are 

recorded by processes P0, P1, and P2. According to Figure 2, 

if either process P1 or P2 fails, it starts over from checkpoint 

B or C and sends the messages using the determinants that 

were previously registered in the same order. Therefore, 

once the recovery is complete, the states of both processes 

will be consistent with the state of process P0, which 

includes the receipt of message m5 from process P1. By 

using a pessimistic logging approach, every process' 

observable state is always recoverable [14]. 

 

 

4. PPROPOSED METHODOLOGY 

The study suggests a CDS-based technique for building a 

virtual backbone over the architecture of the data centre 

network. The most reliable vertices in the data centre, or 

those vertices that are least likely to fail, are those that were 

chosen to be a part of the CDS. The selected vertices are 

optimal as well. The development of a CRR scheme for 

large-scale applications such distributed apps running in a 

CDC is then done using the CDS backbone. A number of 

jobs are supposed to make up an application, each of which 

is operating on a VS hosted by a PS in the data centre.  

 

The projected approach consists of two steps. In the first 

step, we have proposed some CDS rules based on heat rate 

of CPU, energy consumption and vertex degree to get 

reliable vertex, which is named as a dominator PS.  A vertex 

is said to be reliable if its CPU heating rate is less and it has 

a high vertex degree. In the second step, we have proposed a 

checkpointing algorithm for keeping the checkpoint images 

of tasks executing on VSs and message log onto the 

dominator PS in order to enhance the reliability of cloud 

services. The extended rule for CDS and algorithms for 

proposed protocol are defined next. 

4.1. Building of connected dominating set 

If all of the system's vertices are either contained within the 

set or are neighbours of vertices within the set, then the 

subset of vertices selected from the system's graph 

representation is dominant. Additionally, the dominating set, 

also known as CDS, is linked if the sub graph created by the 

vertices in this set is. A virtual layer may be overlaid on top 

of a network's topology using CDS. In order to communicate 

with their neighbours who are CDS members, the vertices 

that do not belong to this group send messages to them. 

 

Furthermore, it has been established that it is NP-hard to 

extract a minimum CDS from a graph [25]. A distributed 

marking technique was created by Wu and Li [24] to 

compute CDS in a linked network. Our CDS calculation 

procedure is different even if we use their marking method. 

A fully connected unit-disk graph is not necessary for the 

method to work. The vertex is indicated if at least two of a 

node's neighbours are not directly connected. We also 

employ a terminology that is similar to that of the Wu-Li 

method. It is presented here in a condensed form for the 

reader's convenience. If a vertex b is marked (m(b)) then it is 

set to T (True), and F (False) if it is not marked. 

 

Each vertex has a unique id and it is marked T or F, i.e., 

CDS member or not, depending on its links with other nodes. 

When a node b becomes the member of CDS, then m (b) is 

set to 1 (T), otherwise 0 (F). We use the notations Vertex (b) 

and Vertex[b] to represent the open and closed neighbour 

sets of y respectively. Thus,  

 

 ( ) | ,Vertex b b a b E  denotes the open neighbour set of 

vertices b and   

     VeVe rtrtex b bex a   denotes the closed neighbour set 

of vertices b 

 

The following localized rules can now be used to minimize 

the size of CDS [18]. 

 

Rule 1: If m(b) = 0 for a pair of marked nodes a and b in 

CDS, then  

  [ ] [ ]  && _ ( ) _ ( )b Vertex a VVerte b ax id V id         (1) 

 

Rule 2: If a marked vertex b in the CDS has marked 

neighbours’ nodes a and c, set m(b) = 0 if 

 

 

      

( ) ( ) ( ) & & _

min _ , _ , _  

Vertex b Vertex a Vertex c V id b

V id a V id b V id c

   
 
  

       (2) 
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where,  _V id b denotes id of vertex b. 

  

In the CDC, to get the most reliable vertices or PSs having 

good storage along with the great coverage, we have 

extended the CDS rules in our proposed work. 

 

4.2. Extending rules for CDS creation 

The id-based static selection of dominating nodes may result 

in poor network performance as nodes in the dominating set 

use more energy processing messages than nodes outside of 

it. As a result, we assign two different weights to each PS, 

which is calculated using the PS's properties, such as CPU 

heating rate and storage capacity. We are also considering 

the coverage of PS by computing its neighbours. PSs with a 

higher weight, i.e., lower CPU temperature, good storage 

capacity, and a higher vertex degree, are preferred by the 

CDS vertex selection technique. 

 

Let h stand for CPU heating rate, s for storage capacity, d for 

a PS’s vertex degree, and nv for the number of VSs hosted 

by PSs. Moreover, we have computed two different weights 

such as W1 (to get the reliable PS) and W2 (for saving the 

CP image along with message) and degree of node is used 

for defining the coverage of PSs.  

 

 1w h nv   (3) 

 2    w s nv     (4) 

 

We have extended the existing CDS construction rules [13] 

with a three objective. Firstly, these extended rules aid in 

reducing the size of CDS. Secondly, these rules identify the 

more reliable vertices in the network topology of the CDC. 

Third, is to find the suitable PS machine which is having 

good storage along with great coverage. For rule formation, 

CPU heating rate, storage capacity and degree of vertices 

have been considered as parameters. The proposed rules are 

defined as follows: 

 

Rule 3: Set m(b) = 0 for any pair of marked vertices a and b 

if one of the following circumstances applies: 

 

         1 1 & &  V a V b W b W a                                       (5) 

              1 1 &&  && _ _V a V b W b W a V id b V id a   (6) 

 

Rule 4: If the nodes a, c is both marked neighbours of the 

vertex b in CDS, then the vertex  

b is marked to false, if it satisfies any of the subsequent 

conditions: 

  

 
             

      

    V b V a V c and V a V b V c and

V c V a V b

   

 

        (7) 

 

             

      

         1 1 1 1

   

   

     _ ( )  _ ( )

V b V a V c and V a V b V c and

V c V a V b and

W b W a or W b W a and V id b V id a

   

 

   
 

        (8)

  

 

 

             

      

                

      

         

1 1 1 1 1 1 1

1 1 1

& & & &

 & &

 & & ||  & & 

_ ( )  _ ( ) ||

  & & 

_ min _ , _ , _

V b V a V c V a V b V c

V c V a V b

W b W a W b W c W b W a W c

V id b V id a

W b W a W c

V id b V id a V id b V id c

   

 

    
 

 
 

  
 
 
 

    (9) 

where, v denotes vertex,  

 

Rule 5: For a pair of vertices a and b in CDS, the node b is 

marked to 0 if 

 

             
    

    
1 1

2 2 2 2

  
     

_ _

W b W a or
V b V a and W b W a or W b W a and

V id b V id a

   
     
      

(10) 

  

Rule 6: The vertices a, c both are marked neighbours of the 

vetrex b in CDS, vertex b is marked to 0 if it satisfies any of 

the subsequent condition: 

 

                        V b V a V c and V a V b V c and V c V a V b            (11) 

                        V b V a V c and V a V b V c and V c V a V b          (12)

  

and if it holds any of the subsequent conditions: 

            2 2 2 2    _ ( )  _ ( )W b W a or W b W a and V id b V id a    

             1 1 1 1      _ ( )  _ ( )  W b W a or W b W a and V id b V id a    

 

                       V b V a V c and V a V b V c and V c V a V b       (13)

  

and satisfies any of the subsequent conditions: 

          2 2   2 2W b W a and W b W c   

         2 2 2   _ ( )  _ ( )W b W a W c and V id b V id a    

                 2 2 2   _ min _ , _ , _W b W a W c and V id b V id a V id b V id c    

              1 1 1 1 1  &&    _ ( )  _ ( )W b W a W c W b W a or V id a V id b     
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 

      

    

     

 

      

         

2 2 2

1 1 1 1

1 1 1

1 1 1

      & &

     ( ) ( )  

   and 
  

_ ( )  _ ( )
 

 

  

_ min _ , _ , _

W b W a W c

W b W a and W b W c or

W b W a W c

V id b V id a

or

W b W a W c and

V id b V id a V id b V id c

 

  
 
   
     
 
 
   
  
     

 

 

Rule 7: PS Node degree-based CDS rule: -Consists of two 

cases:   

 

Case 1: - For a pair of vertices a and b in CDS, the vertex b 

is marked to 0, if  

        

   VD b VD a                                                  (14) 

                           

and satisfies any of the subsequent conditions: 

     VD b VD a or          1 1  and W b W a VD b VD a   

 
         2 2 W  & & W b a VD b VD a 

  

 
        _ ( )  _ ( )VD b VD a and V id b V id a 

 

 
             1 1  _ ( )  _ ( )VD a VD b and W b W a and V id b V id a  

 

 
           2 2   _ ( )  _ ( )VD b VD a and W b W a and V id b V id a  

 

 
              

 

1 1 2 2    

_ ( )  _ ( )

VD b VD a and W b W a and W b W x and

V id y V id x

  



 

 

where VD(b) represents the degree of a vertex b in CDC. 

 

Case 2: - The vertices a, c both are marked neighbours of the 

vertex b in CDS, vertex b is marked to false if it satisfies any 

of the subsequent conditions: 

             

      

    V b V a V c and V a V b V c and

V c V a V b

   

 
         (15) 

             

      

    V b V a V c and V a V b V c and

V c V a V b

   

 
         (16) 

and if it holds any of the subsequent conditions: 

     VD b VD a  or 

        _ ( )  _ ( )VD b VD a and V id b V id a 
  

     1 1>W b W a  or     2 2< WW b a   

          
      

1  1    
 _ ( )  _ ( )

VD b VD a and
W b W a and VD b VD a or

V id b V id a

   
       

 

 

          
   

2 2

  
    

_ ( )  _ ( ) 

VD b VD a and
W b W a and VD b VD a or

V id b V id a

   
       

 

 

             

      

  V b V a V c and V a V b V c and

V c V a V b

   

 
    (17)         

 and satisfies any of the subsequent conditions: 

            VD b VD a and VD b VD c   

           ( )  ( )VD b VD a VD c and VD b VD a    

       
 

      

_
 and 

min _ , _ , _

V id b
VD b VD a VD c

V id a V id b V id c

  
  
 
 

 

       

   

    

 

 

1  1 1  & &  

 _ ( )  _  ( ) 

VD b VD a or

W b W a W c VD b VD a and

V id b V id a

 
 
    
  
    

 

 

      

         
        

      
 

      

1  1 1  

    

_ ( )  _ ( )  

_
   

min _ , _ , _

W b W a W c and

VD b VD a and VD b VD c or

VD b VD a VD c and V id b V id a or

V id b
or VD b VD a VD c and

V id a V id b V id c

 

 
 
  
 
   
 
    
    

   
   

 

           
    

 

  
2  2 2  and  

_ ( )  _  ( ) 

VD b VD a and
W b W a W c VD b VD a or

V id b V id a

  
    

    

 

 

      

         
        

      
 

      

2  2 2  

   

_ ( )  _ ( )  

_
   

min _ , _ , _

W b W a W c and

VD b VD a and VD b VD c or

VD b VD a VD c and V id b V id a or

V id b
or VD b VD a VD c and

V id a V id b V id c

 

 
 
  
 
   
 
    
    

   
   

 

 

The proposed rules find a near-minimal CDS, which 

contains more reliable nodes, i.e., these nodes are less prone 

to failure. 

 

For example, we have considered an undirected connected 

graph (see Fig. 3), which has 20 vertex or PSs. The 
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performance of the CPU, specific MIPS (millions of 

instructions per second), network bandwidth, RAM size, and 

disc storage are used to categorize each PS in this graph. A 

cloud-based data center often accommodates several 

concurrent users at once. The host PS may contain n 

heterogeneous VSs. The leasing of n heterogeneous VSs 

provisioned on the host PSs is typically requested by users. 

RAM, disc storage, network bandwidth, and CPU 

performance needs can all be used to pinpoint VSs. 

 

 
Fig. (3). Undirected Linked Graph 

 

On the graph above, we used both the existing CDS rule and 

the newly suggested rule to reduce the graph's size and 

obtain a reliable node.  

After applying existing CDS rule, the reduced CDS consists 

of the following vertices: 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, while the remaining nodes are marked 

as false. 

After applying newly proposed rules, the reduced CDS 

consists of the following vertices: 3, 4, 7, 9, 10, 11, 13, 14, 

15, 16, and the other nodes are marked as false. 

From the given result, it can be seen that the proposed rules 

provided smaller CDS having the more reliable vertices with 

greater coverage. More dependable PSs will be found in the 

minimum CDS. Furthermore, this minimized CDS is used to 

implement CRR FT. An approach to save checkpoint 

snapshot along with the message log is described below 

where checkpoint snapshot of task or VS are saved from a 

host PS to the dominator PS. 

4.3. CDSCP Algorithm 

We have taken into consideration distributed applications in 

this study, where the individual tasks or processes interact 

with one another through messages while being executed. It 

is crucial that the system does not become inconsistent as a 

result of recovering from one unsuccessful process. As a 

result, during regular operation, information regarding both 

external and internal communications with other processes 

must be saved. To improve the reliability of the VS-based 

services of distributed application, a checkpointing-based FT 

algorithm is presented. The proposed protocol is a 

Connected Dominating Set based Checkpointing Protocol 

(CDSCKP). In this protocol, first, the appropriate dominator 

node of each host PS is located in the data center. A vertex p 

is said to be a dominator PS or vertex of vertex q if it is a 

member of CDS and can be accessed from q. The dominator 

PS is expected to be less prone to failure.  

 

Additionally, each task or process can select its own 

checkpointing frequency and independently save its 

checkpoint on the stable storage available at its dominator 

PS thanks to the condensed CDSCKP protocol. After being 

logged at the dominator PS, any communication intended for 

the work is also provided to the process through the nearby 

PS. The message and information about the sending process 

are both included in this record. With the use of this 

technique, any unsuccessful tasks or processes can be 

recovered separately without affecting or interfering with the 

states of any successful tasks. The procedure is described in 

algorithm 1:  

 

 

Algorithm 1. CDSCP Algorithm 

 

Data Structures Used: 

 

Set of vertices Host_PS[1…n] , 

Set flag for vertex vf[1…m]: Set of flag value for Vertices in 

the given graph  

(Initially set to 1) 

Neighbours of vertex Vertex_Nbrs[1…k],  

Number of Virtual Servers VSs [1…m],  

Marked value of each Vertex Marked_Vertex [i…n] 

Dominator_PS[1…n]: List of obtained CDS vertex after 

applying the proposed rules.  

ci, n: nth checkpoint of PS i; 

Recovered_task: Boolean variable to indicate the success of 

recovery 

 

Procedure: 

 

Finding the Dominator  

1. Initialize Dominator_PS [Host_Vertex] = NULL 

2. Initialize Marked_Vertex [ i] = 1 (for the node which are 

the members of CDS) 

3. For each _i Host PM in CDS do 

4.     If (Marked_ Vertex [i] == 1)  

5.       Then  

6.  Dominator_PS [i] = i 

7.  Exit 

8.  

9.       Else  

10.       Find neighbors of host vertex i, store in the 
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        Vertex_Nbrs 

11.       For each _j Vertex Nbr do 

12.       Do 

13.            If (Marked_ Vertex [j] == 1)  

14.            Then 

15.                  Dominator_PS[i] = j  

 

 

When it is time to take n
th 

checkpoint ci, n for PS i  

  

16.                 For each task k ε Tasks[i] do 

17.   Save checkpoint images of k from the host  

   node to the Dominator_PS j  

18.   Save Message log of k from the host node  

   to the Dominator_PS  j  

19.   End for 

20.   Delete, if exists, ci, n-1 

21.             End if 

22.         End for 

23.   End if 

24. End for 

 

When a VS k fails 

 

Set i= PS of Task k 

Set s= SCDS[i] 

Set flag = es_flag[s] 

If (flag ==1) then 

Retrieve last saved checkpoint of task k from the CDS 

Vertex s 

Rollback to the preceding checkpoint of k 

Recommence calculation from the last save checkpoint 

Set Recovered_task = true 

Exit 

 End if 

Return Recovered_task 

4.4. Failures of VSs or PSs 

In a CDC, node failures happen independently of one 

another. A host node may malfunction for a number of 

reasons, including hardware failure, software bugs, and 

network issues. This paper emphasized hardware 

malfunctions. We have taken into account each node's CPU's 

temperature when modeling these failures. If a node's CPU 

temperature exceeds the temperature threshold value, the 

CPU temperature may increase exponentially and the node 

may fail [26] [27]. 

 

The heating rate model for the PS is taken from [28] and 

defined as:  

 

For heating rate h greater than 0 and less than ih  

 1_ ( ) | , , , h

i if heating rate h A h h e                (18) 

This mathematical function reflects the variation of 

processor heating rate when computer boots 

 

For h greater than ih  and less than 1ih   

 1_ ( ) | , , , ih

i if heating rate h A h h e        (19) 

 

For t  is greater than 1it   and less than 2it   

    1 1_ ( ) | , , , sin ih

i i if heating rate h A h h A t t e         (20) 

 

Where i denotes a set of positive integers and ih is a static 

value, calculated by 

 35ih
e   

ih
e designates the processor heating rate without any load, 

(where ih
e =35°C);  

1ih   contains an arbitrary value, and 2ih  is calculated by 

2 1/i ih h    ;  

A= amplitude, represents the peak value of processor heating 

rate (< 68°C);  

  specifies the period for which the processor accomplishes 

the load.   

/   used to calculate the first half-round of sinusoidal 

function;   

 

It is also feasible to arbitrarily alter A's value and to indicate 

different types of consumption of the CPU in various time 

frames. This heating rate model is used to predict the 

deterioration of a PS. 

4.5. Power Consumption Model for PSs 

Most of the power consumption in the CDC is from disk 

storage, network, cooling system, and computation 

processing. The power model used in the literature [25][28] 

is defined as follows: 

 

      –   *  idle busy idlePM u PS PS PS U          (21) 

 

Where PSidle denotes power consumed by idle PSs, PSbusy 

denotes power consumed by a fully loaded PS and U denotes 

CPU utilization. 

5. PERFORMANCE ASSESSMENT 

In this section, we've used simulated tests to assess the 

CDSCKP scheme's efficacy. Additionally, we compared the 

RCKP (Random Checkpointing Protocol) and WLCKP (Wu 
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Li based Checkpointing protocol) and proposed methods in 

terms of recovering from unsuccessful tasks or virtual 

machines (VSs), total bandwidth usage, total power 

consumption, and task or VS rollback and recovery times. 

 

5.1. Simulation Step 

 

The performance of the proposed approach implemented and 

evaluated on the platform having Intel(R) Core (TM) CPU 

i5-7200 processor having a CPU speediness of 2.70 GHz and 

storage of 8 GB. The system configuration for CDSCKP is 

defined in Table 1. 

 

Each job or assignment is evenly dispersed in size between  

 [10 hours, 20 hours] with a 20-minute checkpoint 

intermission. The system checkpoint image and the VS setup 

image each have sizes of 1.78 GB and 1.28 GB, respectively 

[3]. 

 

 

 
Table 2. System configuration for CDSCKP 

 

 

 

 

 

 

 

 

 

5.2. Metrics 

 

The following performance measures are used to gauge the 

CDSCKP protocol's effectiveness: 

 

Recovery Capability (%): This metric is determined as 

follows to determine the percentage of tasks or VSs that are 

successfully recovered: 

 
     Recov  

Recov   100
     

Total Number of tasks or VSs ered Sucessfully
erability

Total tasks or VSs Failure
    (22) 

 

Total Bandwidth Usage (TBWU): - Used to compute the 

total amount of bandwidth used during the CRR process. The 

mathematical formula to calculate total bandwidth 

consumption is defined below: 

 

 
1 1

 _ _ ,  min _   _

n m

i j

i j

TBWC link count Host PS Do ator PS link capacity

 

  (23)  

  

Total Power Consumption (TPC): - This metric is used to 

find the power consumed by all the dominator PSs in the 

CDC. The values for the power consumption model are 

described in Table 2. The mathematical formula to compute 

TEC is defined below: 

 
1

  min _
n

i

i

TEC E Do ator PS


    (24)                                                                  

 

Table 3. Values for energy consumptions for different CPU 

types 
Energy Consumption Parameters 

CPU-Type dominator PS 

idle 

dominator 

PS busy 

8-core  160w 270w 

12 to 15-core 210w 360w 

 

Rollback and Recovery Time (RRT): - This metric is used to 

calculate the rollback and recovery time taken by a failed 

task. The mathematical formula is defined as follows: - 

 
1 1

 _ ,  min _  
n m

i j

i j

RRT time Host PS Do ator PS
 

  (25)                                     

     

 5.3. Results 

 

To measure the performance of the newly proposed method 

we 

comp

are it 

by a 

RCK

P 

(Ran

dom Checkpointing Placement Method) and WLCKP (Wu-

Li based Checkpointing Placement method). In RCKP, 

random dominator PSs are selected to place the checkpoint 

image and message log. The WLCKP is existing method for 

reducing the size of CDS based on id of PS.  

 

 

5.3.1. Number of Reliable Dominator: 

 

In this section, we calculated the number of dominator PS 

obtained after applying proposed rules of CDS constriction. 

From Fig. 4, it can be said that the CDSCKP is providing a 

minimized number of dominator PS, which are most 

appropriate and reliable for placing the checkpoint images of 

tasks or VSs and message logs. 

Platform Configuration 

Type Specification 

Minimum CPU heating rate 35oC 

Maximum CPU heating rate 68oC 

VSs  0 to 4 
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Fig. (4).  Minimized Number of dominator PS 

 

5.3.2. Measuring Successful Recoveries 

 

The CDSCKP approach is used in this experiment to 

calculate the percentage of successfully recovered tasks or 

VSs during a predetermined time frame. Figure 5 shows how 

the number of jobs or VSs affects the recoverability of 

various VSs. The results show that the CDSCKP method 

achieves a higher recoverability than the RCKP and WLCKP 

protocols by an average of about 26% and 24%, respectively. 

Additionally, the recoverability does not decrease as the 

number of tasks rises, making the PESUCR approach 

performance scalable. 

 
Fig. (5). Recoverability of Varied number of Tasks 

 

Fig. 6 illustrates how the recoverability of RCKP, WLCKP, 

and CDSCKP changes as time goes on. For all numbers of 

jobs, CDSCKP consistently yields superior recoverability 

than the RCKP and WLCKP approaches. The effectiveness 

of the approaches does not significantly deteriorate with 

time. 
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Fig. (6). Recoverability vs. Execution Times 

 

The succeeding simulations assess recoverability when task 

failure rates change. Failure rate is a measure of how 

frequently a host or virtual server (VS) fails over a specific 

time frame [25]. For 200 and 500 tasks, respectively the 

recoverability of the system for failure rates of 0.01, 0.05, 

0.1, and 0.5 is depicted in Fig. 7 (denoting low to high 

failure rates). 

 

 
Fig. (7). Recoverability Vs. Failure Rates 

 

 

5.3.3. Measuring Bandwidth Usage 

 

In this experiment, the bandwidth utilized to deploy 

checkpoint images for tasks or VSs is measured. The 

CDSCKP consume an average of approximately 79% less 

bandwidth than the RCKP. Fig. 8 illustrates the total amount 

of bandwidth used by different number of PSs.   

 

 
Fig. (8). Total bandwidths used CRR Process 

 

 

5.3.4. Measuring Power Consumption 

 

This series of tests examines the CPU's power usage when 

taking a placement checkpoint snapshot and sending it to the 

dominator PS. Fig. 9 illustrates the total amount of power 

used by different CPU types. 
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Fig. (9). Total energy consumed by different CPU types 

 

 

5.3.5. Measuring Rollback and Recovery Time:  

 

The time required for tasks or VSs to rollback and recover is 

measured in this final set of trials (see Fig. 10). From the 

result it can be illustrates that the CDSCKP is rollback and 

recover the failed task in less time as compared to RCKP 

method.  

 

 
Fig. (10). Rollback and Recovery time of different Tasks 

 

Thus, the simulation’s outcomes demonstrate that the 

CDSCKP protocol is providing the higher recoverability, 

consume less bandwidth than RCKP and less power than the 

RCKP and WLCKP protocol. Additionally, CDSCKP takes 

less time than RCKP to resume execution after rolling back 

to the last saved checkpoint. 

6. CONCLUSION 

In order to increase the dependability of VS-based services, 

this study suggests a CDS-based scheme for building a 

virtual backbone over the DCN topology. This scheme is 

then used to produce a CRR-based fault tolerance scheme 

called CDSCKP. In order to obtain a CDS for the data center 

topology graph, the work suggests various guidelines based 

on the rate of CPU heating, storage capacity, and vertex 

coverage. The PSs with the lowest CPU heating rate, the 

greatest storage, and the highest vertex degree are chosen to 

build the CDS, after which the checkpoint image of the task 

or VS as well as the message log are put on these CDS 

nodes. Utilizing measures like recoverability, total 

bandwidth, power consumption, and rollback and recovery 

times, the CDSCKP's performance is assessed. After that, it 

is compared with an RCKP and WLCKP. The simulation 

results show that compared to previous approaches, the 

CDSCKP offers superior dependability and requires less 

time and resources for rollback and recovery. 
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