
An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5363
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

RESEARCH ARTICLE

An Optimal Checkpointing with Message Logging Protocol for
Fault Tolerance of Distributed Applications in the Cloud Data Center

Priti Kumari
1, *

, Vandana Dubey
1
, Vinita

2

1 Department of Computer Science & Engineering, Ashoka Institute of Technology and Management, Varanasi, India

2 Department of Computer Science & Engineering, ABES Engineering College, Ghaziabad, India

Priti19sep@gmail.com, vandanashuklaec05@gmail.com, vinita89.cse@gmail.com

Abstract: Background: Services running on low-cost hardware generally enabled by cloud data centers

(CDC). Scaling the hardware horizontally is made simple by the addition of more resources. The CDC

uses commodity hardware, which results in a high failure rate for physical servers (PSs). As a result of

this failure, virtual servers (VSs) were provisioned on the failed PS. Hence the fault tolerance is a major

challenge for cloud service providers.

Objective: To handle failures of commodity hardware in CDC, there is need of fault tolerance method.

The motive of this work is to develop an optimal and efficient failure recovery methodology based on

checkpointing for fault tolerance of cloud-based services.

Methods: the proposed approach is implemented in two steps. In the first step, we build a virtual

backbone across the CDC network architecture; the research suggests a novel Connected Dominating

Set (CDS) based method. The PSs serve as the vertex of the graph used in the CDS creation approach to

represent the network topology. In order to obtain a CDS or optimal number of PS for the topology

graph, it then suggests a set of criteria based on the rate of CPU heating, storage capacity, and vertex

degree of PSs. Moreover, This base is then used to create a fault tolerant system based on checkpointing

and rollback recovery (CRR) in order to increase reliability.

In the second step, A CDSCKP method is proposed. In which we have implemented uncoordinated

checkpointing with message logging while taking into account distributed applications. Checkpoint

snapshots of tasks or VSs are placed on the CDS vertices.

Results: The suggested scheme's effectiveness is assessed using parameters such as recoverability,

bandwidth and power consumption and rollback and recovery time. The CDSCKP is compared with a

Random checkpointing placement protocol (RCKP), Wu-Li checkpointing placement protocol

(WLCKP). The simulation results show that the CDSCKP offers greater recoverability, uses less

bandwidth and power, and has little rollback and recovery overhead.

Conclusion: In order to increase the dependability of VS-based services, this study suggests a CDS-

based scheme for building a virtual backbone over the DCN topology. This scheme is then used to

produce a CRR-based fault tolerance scheme called CDSCKP.

Keywords: Cloud computing; cloud data center; physical server; virtual server; reliability; fault tolerance; connected
dominating set; distributed application; checkpointing and rollback recovery; Uncoordinated checkpointing

mailto:Priti19sep@gmail.com
mailto:vandanashuklaec05@gmail.com
mailto:vinita89.cse@gmail.com

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5364
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

1. INTRODUCTION

Cloud computing (CC) is increasingly being used as a
platform for executing large-scale workloads such as
scientific workflow execution, big data processing, analytics
applications, and so on. This form of computing provides so
many advantages such as on-demand scalability, resource
provisioning elasticity, and massively parallel processing
design. CC provides different kinds of services to the end
users i.e., Software as a Service (SaaS) provides web-hosted
applications to users such as email, security, social media
applications, and so on; Platform as a Service (PaaS)
provides computing platforms to end-users such as operating
systems, compilers, and so on; and Infrastructure as a
Service (IaaS) delivers computing infrastructure to users
over the internet such as virtual servers, storage, and
networking. [1][2].

The proposed work primarily focuses on the IaaS, which
provides cloud customers with access to a data centre’s
computational capacity. Virtualization technology is used in
IaaS to provide resources to users from faraway IaaS
datacentres [3]. Thousands of real machines are housed in a
data centre, which can host VSs for users dependent on their
needs. The widespread use of the CDC for hosting corporate
or enterprise applications, on the other hand, may result in
service reliability hitches. Because of their distributed
structure, vast scale of operation and variety of commodity
technology, a variety of problems emerge in cloud systems,
resulting in failures, outages, and decreased performance.
Some of the cloud outages are discussed in Table 1.
Fault tolerance (FT) strategies can be used to handle failures
in the cloud environment. Even if some system components
aren't working properly, FT allows the system to serve user
requests [4] [5]. CRR and replication are the most often
utilized FT techniques. Replication based on the presence of
redundant resources and makes multiple copies of a task or
resource [6]. If a task or resource fails, its copy can be
employed to keep operations running. CRR, on the other
hand, is a technique for regularly saving the state of systems
during normal operation. The system is resumed from a
previously saved error-free state in the event of a failure
[7][8].

Table 1. Cloud Providers Outages in 2022

Cloud

Service

Provider

(CSP)

Outage Explanation Year

Google cloud

A modification was made to

the Traffic Director code

that manages the

configuration.

March-

2022 (2

hours)

Microsoft Mail Related

Afterward a day, in which

Microsoft added new

security capabilities to

secure office 365 users, the

failure happens.

2022

Cloudflare internet

Created significant

downtime on a significant

portion of the Internet,

purportedly affecting well-

known websites including

Discord, Shopify, Grindr,

Fitbit, and Peloton.

June -

2022

Microsoft

Azure
power

A sudden power fluctuation

in one of our data centres,

inside one of our

Availability Zones, in the

East US 2 regions.

June-

2022

Facebook

Workplace

collaboration

tool

A server problem led to the

outage that hit Facebook and

Instagram.

2022

Apple Cloud

Some customers are unable

to access their iCloud

accounts.

January

- 2022

IBM Cloud

Users of IBM Cloud

services in the Dallas region

were impacted.

January

– 2022

(Less

than an

hour)

Salesforce Slack

Some users are having

issues loading Slack.

2022

Mimecast

power

Due to a "severe power

outage," its North American

grid experienced issues,

which resulted in delays and

"degraded service" for

consumers.

2022

The current study proposes a CRR FT mechanism for the
enhancing the reliability of cloud-based services. The
suggested mechanism creates a CDS over the graph that
represents the topology of a CDC. The PSs are the graph's
vertex, while the links between them are the graph's edges.
The CDS building standards were created with factors
specific to data center PSs in mind. The CDS is used to build
a virtual backbone across the data center network topology
and place checkpoint snapshots of tasks or VSs. In case of
failure, the last saved checkpoint is used to start the
application. Simulation experiments have found keeping
checkpoint images of task using CDS is more reliable, cost-

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5365
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

effective, and energy-efficient as compared to a RCKP and
WLCKP.

This paper's main contribution is as follows:

 A CDS-based backbone for DCN topology is proposed.

 To acquire the CDS and to achieve optimal number of

PS for the topology graph, developed some rules based
on CPU heating rate, storage capacity, and vertex degree
of a PSs. PSs with a lower CPU heating rate are thought
to be more reliable vertices. The CDS is formed up of
vertices with better storage capacity and vertex degrees.

 Moreover, a CRR based FT protocol such as CDSCKP

was implemented using the CDS backbone.

 Finally, we have measured the performance of the

suggested approach in terms of recoverability,
bandwidth usage, power consumptions, and rollback and
recovery times.

The remainder of the paper is structured as follows: In
Section II, the associated strategies for CRR-based FT in CC
are described. The CRR process is explained in Segment III.
The anticipated CDS over CDN topology for storing
checkpoint snapshot with messages is covered in Section IV.
In Section V, it is addressed how well the suggested method
works and the outcomes of the simulation. Section VI is
where we finally put an end to our presentation.

2. RELATED WORK

In cloud-based services, FT is a major concern. In the

presence of some defective system components, FT

approaches allow the system to deliver important services

with greater performance [1]. System errors may be caused

by either software or hardware (H/W) issues, FT techniques

are necessary to detect and handle them. Checkpointing,

replication, and task migration are the most utilized

strategies for fault tolerance of VSs in IaaS cloud computing,

according to the literature [4][5].

In [9] a checkpointing-based FT mechanism was used to

increase the resilience of server-based cloud applications. A

CRR strategy for a CDC was devised by J. Zhao et al. [8]. A

peer-to-peer CRR approach is used in their scheme, in which

a VS's CP snapshot is kept on a nearby or peer host PS. The

suggested solution eliminates the need for dominant memory

in situations where network congestion affects whole host

PSs and VSs. The authors also showed that using a

distributed way to produce speedier checkpoints and

recovery is a good idea. A. Zhou et al. [7] have suggested

using the EDCKP checkpoint FT system in data centres’ fat-

tree topologies to tolerate host, PS, and edge switch failure.

The checkpoint snapshots of the VS are installed or located

on the PS in the same pod in this method. This strategy seeks

to ensure CC-based service reliability while also reducing

network resource consumption. Chinnathambi, et al. [10]

offered a scheduling technique for keeping track of the

performance of the virtual node and a useful checkpointing

method for accommodating task and job migration with the

least amount of overhead. The proposed technique,

according to the authors, effectively recognizes VS flaws and

frequently migrates the job to a functional VS. Amoon et al.

[11] proposed a fault tolerance strategy based on

checkpointing with a variable or changeable checkpoint

interval. On the other hand, the percentage of servers that

cannot accommodate the VS that is used to finish the

application determines how long the interval for that

application will be. Cheraghlou et al. [12] developed a

framework for fault tolerance in a cloud-based environment

based on fuzzy logic. A fuzzy system's design is built on

three features: policies, fault detection techniques, and fault

recovery techniques. An adaptive method was put out by

Rezaeipanah, et al. [13] for quickly identifying cloud system

faults. In order to achieve this, the authors used a predictive

technique to keep an eye on the system before using a fuzzy

logic-based algorithm to find the weaknesses. They also

employed the checkpointing approach to cut down on

processing costs and migration time. In [14], the authors

have used fat tree topology based checkpointing approach to

execute both bag of task application and distributed

application.

Further, many works have emphasized that any FT

scheme (or any other algorithm) does not add a significant

overhead to the energy requirements of the cloud computing

infrastructure [15][16]. Considering the need to lower the

energy demands of a CDC, it is desired that any algorithm

execution consumes low bandwidth and thus, low energy.

It is assumed that an efficient topology of a data center

can contribute to this requirement. Therefore, many

topologies, such as a fat tree, RUFT (reduced unidirectional

fat-tree) and Z-fat tree have been suggested in the literature

[17] [18]. Our work proposes a CDS based topology for a

data center that has been designed for the fault-tolerant

service execution. CDS have been often used for virtual

backbone construction in networks. R. Kanniga Devi et al.

[19] presented a theoretical model based on the dominating

set. This model illustrated that the graph with the DS may

tolerate faults as well as deliver improved load balancing by

decreasing network overhead. In [20] [21], the authors have

suggested a distributed marking system to find CDS in a

completely connected graph.

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5366
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

3. PREFACES

By recovering the computation to the most recent

checkpoint, CRR is a well-liked FT technique for

minimizing the amount of computation lost when a process

fails. The stable storage device, a logical device that can

endure the most system faults, where the programs record

their checkpoints during the failure-free operation. The CRR

and stable storage processes, which combine checkpointing

and application execution, can enhance application

performance. [7][8][9]. The CRR method is illustrated in

Fig. 1.

Fig. (1). Task/VS checkpoint and rollback recovery model

The states of each process that makes up the system are

combined to form the global system state. The status of a

process can be routinely recorded using the CRR technique

as a checkpoint that can be restored in the event of a

successful recovery failure. However, because message flow

between processes may have developed inter-process

dependencies, rolling back one process could result in an

inconsistent system state. To maintain a consistent global

state in this scenario, reverting one process may result in

reverting other, fault-free processes as well. Consistent

global states are those that represent a state that may have

been attained throughout execution [8][22].

The global state Gi is said to exist in a system if there are n

processes.

    
1

1 , : () ,
k

i p p q
p

i N i G LS RM m LS SM m LS p q


 
          

 

The send message event is SM, and the local state logged at

process p is LSp.

RM represents the receive message event.

A compilation of the local states from each process results in

the global state, or Gi.

Orphan messages are those whose sending was not recorded

by the sender but whose receipt has been logged by the

recipient. There are no orphan messages that are in a stable

state.

This work focuses on distributed applications, which are

composed of multiple processes or tasks that communicate

via messages in order to finish the distributed program [23].

A system must get back to a consistent state after a process

failure. The communication between processes must

therefore be recorded using the CRR approach. Coordinated

checkpointing, where processes synchronize or coordinate

their checkpoints in order to save a globally consistent

system state, is one technique for achieving global

consistency. Because each process continues where it left off

from its most recent checkpoint, this strategy facilitates

recovery [23][29][30]. As a result, the scope of rollback is

constrained and a domino effect, or rollback to the prior

system state, is avoided. Conversely, because all processes

must take part in each checkpoint action, coordinated

protocols are inappropriate for usage in large-scale systems

because they significantly increase synchronization costs and

delay.

Since each process can choose when to take a checkpoint,

asynchronous or uncoordinated checkpointing is preferable

to coordinated checkpointing. As a result, there is no need

for synchronization, and each process can choose the

location and timing of its checkpoints [23] [24].

Uncoordinated checkpointing, on the other hand, could start

a chain reaction that spreads throughout the recovery process

and costs a large amount of productive labor. Each process

must maintain various checkpoints, and if one fails, multiple

processes must rollback.

To enable independent checkpointing and process recovery,

this study uses CDSCKP, a log-based uncoordinated

checkpointing technique. Each process's current state is

periodically captured as a checkpoint, and each message it

receives afterward (before to the next checkpoint) is

recorded in a message log. The checkpoints and the

messages that have been recorded are kept in a safe place.

When a system process fails, it may still be running and

replay the message log from the most recent checkpoint.

This makes it possible for the process to reach its pre-failure

state on its own, without the aid of other processes.

[14][22][23]. The log-based recovery technique is depicted

in Fig. 2.

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5367
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

Fig. (2). Log-based Recovery process

The determinants needed to repeat messages m0, m5, m1,

m3, m6, and m2, m4 during the failure-free activity are

recorded by processes P0, P1, and P2. According to Figure 2,

if either process P1 or P2 fails, it starts over from checkpoint

B or C and sends the messages using the determinants that

were previously registered in the same order. Therefore,

once the recovery is complete, the states of both processes

will be consistent with the state of process P0, which

includes the receipt of message m5 from process P1. By

using a pessimistic logging approach, every process'

observable state is always recoverable [14].

4. PPROPOSED METHODOLOGY

The study suggests a CDS-based technique for building a

virtual backbone over the architecture of the data centre

network. The most reliable vertices in the data centre, or

those vertices that are least likely to fail, are those that were

chosen to be a part of the CDS. The selected vertices are

optimal as well. The development of a CRR scheme for

large-scale applications such distributed apps running in a

CDC is then done using the CDS backbone. A number of

jobs are supposed to make up an application, each of which

is operating on a VS hosted by a PS in the data centre.

The projected approach consists of two steps. In the first

step, we have proposed some CDS rules based on heat rate

of CPU, energy consumption and vertex degree to get

reliable vertex, which is named as a dominator PS. A vertex

is said to be reliable if its CPU heating rate is less and it has

a high vertex degree. In the second step, we have proposed a

checkpointing algorithm for keeping the checkpoint images

of tasks executing on VSs and message log onto the

dominator PS in order to enhance the reliability of cloud

services. The extended rule for CDS and algorithms for

proposed protocol are defined next.

4.1. Building of connected dominating set

If all of the system's vertices are either contained within the

set or are neighbours of vertices within the set, then the

subset of vertices selected from the system's graph

representation is dominant. Additionally, the dominating set,

also known as CDS, is linked if the sub graph created by the

vertices in this set is. A virtual layer may be overlaid on top

of a network's topology using CDS. In order to communicate

with their neighbours who are CDS members, the vertices

that do not belong to this group send messages to them.

Furthermore, it has been established that it is NP-hard to

extract a minimum CDS from a graph [25]. A distributed

marking technique was created by Wu and Li [24] to

compute CDS in a linked network. Our CDS calculation

procedure is different even if we use their marking method.

A fully connected unit-disk graph is not necessary for the

method to work. The vertex is indicated if at least two of a

node's neighbours are not directly connected. We also

employ a terminology that is similar to that of the Wu-Li

method. It is presented here in a condensed form for the

reader's convenience. If a vertex b is marked (m(b)) then it is

set to T (True), and F (False) if it is not marked.

Each vertex has a unique id and it is marked T or F, i.e.,

CDS member or not, depending on its links with other nodes.

When a node b becomes the member of CDS, then m (b) is

set to 1 (T), otherwise 0 (F). We use the notations Vertex (b)

and Vertex[b] to represent the open and closed neighbour

sets of y respectively. Thus,

 () | ,Vertex b b a b E  denotes the open neighbour set of

vertices b and

     VeVe rtrtex b bex a  denotes the closed neighbour set

of vertices b

The following localized rules can now be used to minimize

the size of CDS [18].

Rule 1: If m(b) = 0 for a pair of marked nodes a and b in

CDS, then

  [] [] && _ () _ ()b Vertex a VVerte b ax id V id  (1)

Rule 2: If a marked vertex b in the CDS has marked

neighbours’ nodes a and c, set m(b) = 0 if

 

      

() () () & & _

min _ , _ , _

Vertex b Vertex a Vertex c V id b

V id a V id b V id c

   
 
  

 (2)

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5368
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

where,  _V id b denotes id of vertex b.

In the CDC, to get the most reliable vertices or PSs having

good storage along with the great coverage, we have

extended the CDS rules in our proposed work.

4.2. Extending rules for CDS creation

The id-based static selection of dominating nodes may result

in poor network performance as nodes in the dominating set

use more energy processing messages than nodes outside of

it. As a result, we assign two different weights to each PS,

which is calculated using the PS's properties, such as CPU

heating rate and storage capacity. We are also considering

the coverage of PS by computing its neighbours. PSs with a

higher weight, i.e., lower CPU temperature, good storage

capacity, and a higher vertex degree, are preferred by the

CDS vertex selection technique.

Let h stand for CPU heating rate, s for storage capacity, d for

a PS’s vertex degree, and nv for the number of VSs hosted

by PSs. Moreover, we have computed two different weights

such as W1 (to get the reliable PS) and W2 (for saving the

CP image along with message) and degree of node is used

for defining the coverage of PSs.

 1w h nv  (3)

 2 w s nv  (4)

We have extended the existing CDS construction rules [13]

with a three objective. Firstly, these extended rules aid in

reducing the size of CDS. Secondly, these rules identify the

more reliable vertices in the network topology of the CDC.

Third, is to find the suitable PS machine which is having

good storage along with great coverage. For rule formation,

CPU heating rate, storage capacity and degree of vertices

have been considered as parameters. The proposed rules are

defined as follows:

Rule 3: Set m(b) = 0 for any pair of marked vertices a and b

if one of the following circumstances applies:

         1 1 & & V a V b W b W a  (5)

              1 1 && && _ _V a V b W b W a V id b V id a   (6)

Rule 4: If the nodes a, c is both marked neighbours of the

vertex b in CDS, then the vertex

b is marked to false, if it satisfies any of the subsequent

conditions:


             

      

 V b V a V c and V a V b V c and

V c V a V b

   

 

 (7)



             

      

         1 1 1 1

 _ () _ ()

V b V a V c and V a V b V c and

V c V a V b and

W b W a or W b W a and V id b V id a

   

 

   
 

 (8)



             

      

                

      

         

1 1 1 1 1 1 1

1 1 1

& & & &

 & &

 & & || & &

_ () _ () ||

 & &

_ min _ , _ , _

V b V a V c V a V b V c

V c V a V b

W b W a W b W c W b W a W c

V id b V id a

W b W a W c

V id b V id a V id b V id c

   

 

    
 

 
 

  
 
 
 

 (9)

where, v denotes vertex,

Rule 5: For a pair of vertices a and b in CDS, the node b is

marked to 0 if

             
    

    
1 1

2 2 2 2

_ _

W b W a or
V b V a and W b W a or W b W a and

V id b V id a

   
     
      

(10)

Rule 6: The vertices a, c both are marked neighbours of the

vetrex b in CDS, vertex b is marked to 0 if it satisfies any of

the subsequent condition:

                     V b V a V c and V a V b V c and V c V a V b      (11)

                     V b V a V c and V a V b V c and V c V a V b      (12)

and if it holds any of the subsequent conditions:

            2 2 2 2 _ () _ ()W b W a or W b W a and V id b V id a  

             1 1 1 1 _ () _ () W b W a or W b W a and V id b V id a  

                     V b V a V c and V a V b V c and V c V a V b      (13)

and satisfies any of the subsequent conditions:

          2 2 2 2W b W a and W b W c 

         2 2 2 _ () _ ()W b W a W c and V id b V id a  

                 2 2 2 _ min _ , _ , _W b W a W c and V id b V id a V id b V id c  

              1 1 1 1 1 && _ () _ ()W b W a W c W b W a or V id a V id b   

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5369
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376



      

    

     

 

      

         

2 2 2

1 1 1 1

1 1 1

1 1 1

 & &

 () ()

 and

_ () _ ()

_ min _ , _ , _

W b W a W c

W b W a and W b W c or

W b W a W c

V id b V id a

or

W b W a W c and

V id b V id a V id b V id c

 

  
 
   
     
 
 
   
  
     

Rule 7: PS Node degree-based CDS rule: -Consists of two

cases:

Case 1: - For a pair of vertices a and b in CDS, the vertex b

is marked to 0, if

   VD b VD a (14)

and satisfies any of the subsequent conditions:

     VD b VD a or          1 1 and W b W a VD b VD a 


         2 2 W & & W b a VD b VD a 


       _ () _ ()VD b VD a and V id b V id a 


            1 1 _ () _ ()VD a VD b and W b W a and V id b V id a  


           2 2 _ () _ ()VD b VD a and W b W a and V id b V id a  


              

 

1 1 2 2

_ () _ ()

VD b VD a and W b W a and W b W x and

V id y V id x

  



where VD(b) represents the degree of a vertex b in CDC.

Case 2: - The vertices a, c both are marked neighbours of the

vertex b in CDS, vertex b is marked to false if it satisfies any

of the subsequent conditions:

             

      

 V b V a V c and V a V b V c and

V c V a V b

   

 
 (15)

             

      

 V b V a V c and V a V b V c and

V c V a V b

   

 
 (16)

and if it holds any of the subsequent conditions:

     VD b VD a or

       _ () _ ()VD b VD a and V id b V id a 

     1 1>W b W a or     2 2< WW b a

          
   

1 1
 _ () _ ()

VD b VD a and
W b W a and VD b VD a or

V id b V id a

   
       

          
   

2 2

_ () _ ()

VD b VD a and
W b W a and VD b VD a or

V id b V id a

   
       

             

      

 V b V a V c and V a V b V c and

V c V a V b

   

 
 (17)

 and satisfies any of the subsequent conditions:

           VD b VD a and VD b VD c 

          () ()VD b VD a VD c and VD b VD a  

       
 

      

_
 and

min _ , _ , _

V id b
VD b VD a VD c

V id a V id b V id c

  
  
 
 

       

   

    

 

1 1 1 & &

 _ () _ ()

VD b VD a or

W b W a W c VD b VD a and

V id b V id a

 
 
    
  
    



      

         
        

      
 

      

1 1 1

_ () _ ()

_

min _ , _ , _

W b W a W c and

VD b VD a and VD b VD c or

VD b VD a VD c and V id b V id a or

V id b
or VD b VD a VD c and

V id a V id b V id c

 

 
 
  
 
   
 
    
    

   
   

           
    

 

2 2 2 and

_ () _ ()

VD b VD a and
W b W a W c VD b VD a or

V id b V id a

  
    

    



      

         
        

      
 

      

2 2 2

_ () _ ()

_

min _ , _ , _

W b W a W c and

VD b VD a and VD b VD c or

VD b VD a VD c and V id b V id a or

V id b
or VD b VD a VD c and

V id a V id b V id c

 

 
 
  
 
   
 
    
    

   
   

The proposed rules find a near-minimal CDS, which

contains more reliable nodes, i.e., these nodes are less prone

to failure.

For example, we have considered an undirected connected

graph (see Fig. 3), which has 20 vertex or PSs. The

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5370
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

performance of the CPU, specific MIPS (millions of

instructions per second), network bandwidth, RAM size, and

disc storage are used to categorize each PS in this graph. A

cloud-based data center often accommodates several

concurrent users at once. The host PS may contain n

heterogeneous VSs. The leasing of n heterogeneous VSs

provisioned on the host PSs is typically requested by users.

RAM, disc storage, network bandwidth, and CPU

performance needs can all be used to pinpoint VSs.

Fig. (3). Undirected Linked Graph

On the graph above, we used both the existing CDS rule and

the newly suggested rule to reduce the graph's size and

obtain a reliable node.

After applying existing CDS rule, the reduced CDS consists

of the following vertices: 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, while the remaining nodes are marked

as false.

After applying newly proposed rules, the reduced CDS

consists of the following vertices: 3, 4, 7, 9, 10, 11, 13, 14,

15, 16, and the other nodes are marked as false.

From the given result, it can be seen that the proposed rules

provided smaller CDS having the more reliable vertices with

greater coverage. More dependable PSs will be found in the

minimum CDS. Furthermore, this minimized CDS is used to

implement CRR FT. An approach to save checkpoint

snapshot along with the message log is described below

where checkpoint snapshot of task or VS are saved from a

host PS to the dominator PS.

4.3. CDSCP Algorithm

We have taken into consideration distributed applications in

this study, where the individual tasks or processes interact

with one another through messages while being executed. It

is crucial that the system does not become inconsistent as a

result of recovering from one unsuccessful process. As a

result, during regular operation, information regarding both

external and internal communications with other processes

must be saved. To improve the reliability of the VS-based

services of distributed application, a checkpointing-based FT

algorithm is presented. The proposed protocol is a

Connected Dominating Set based Checkpointing Protocol

(CDSCKP). In this protocol, first, the appropriate dominator

node of each host PS is located in the data center. A vertex p

is said to be a dominator PS or vertex of vertex q if it is a

member of CDS and can be accessed from q. The dominator

PS is expected to be less prone to failure.

Additionally, each task or process can select its own

checkpointing frequency and independently save its

checkpoint on the stable storage available at its dominator

PS thanks to the condensed CDSCKP protocol. After being

logged at the dominator PS, any communication intended for

the work is also provided to the process through the nearby

PS. The message and information about the sending process

are both included in this record. With the use of this

technique, any unsuccessful tasks or processes can be

recovered separately without affecting or interfering with the

states of any successful tasks. The procedure is described in

algorithm 1:

Algorithm 1. CDSCP Algorithm

Data Structures Used:

Set of vertices Host_PS[1…n] ,

Set flag for vertex vf[1…m]: Set of flag value for Vertices in

the given graph

(Initially set to 1)

Neighbours of vertex Vertex_Nbrs[1…k],

Number of Virtual Servers VSs [1…m],

Marked value of each Vertex Marked_Vertex [i…n]

Dominator_PS[1…n]: List of obtained CDS vertex after

applying the proposed rules.

ci, n: nth checkpoint of PS i;

Recovered_task: Boolean variable to indicate the success of

recovery

Procedure:

Finding the Dominator

1. Initialize Dominator_PS [Host_Vertex] = NULL

2. Initialize Marked_Vertex [i] = 1 (for the node which are

the members of CDS)

3. For each _i Host PM in CDS do

4. If (Marked_ Vertex [i] == 1)

5. Then

6. Dominator_PS [i] = i

7. Exit

8.

9. Else

10. Find neighbors of host vertex i, store in the

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5371
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

 Vertex_Nbrs

11. For each _j Vertex Nbr do

12. Do

13. If (Marked_ Vertex [j] == 1)

14. Then

15. Dominator_PS[i] = j

When it is time to take n
th

checkpoint ci, n for PS i

16. For each task k ε Tasks[i] do

17. Save checkpoint images of k from the host

 node to the Dominator_PS j

18. Save Message log of k from the host node

 to the Dominator_PS j

19. End for

20. Delete, if exists, ci, n-1

21. End if

22. End for

23. End if

24. End for

When a VS k fails

Set i= PS of Task k

Set s= SCDS[i]

Set flag = es_flag[s]

If (flag ==1) then

Retrieve last saved checkpoint of task k from the CDS

Vertex s

Rollback to the preceding checkpoint of k

Recommence calculation from the last save checkpoint

Set Recovered_task = true

Exit

 End if

Return Recovered_task

4.4. Failures of VSs or PSs

In a CDC, node failures happen independently of one

another. A host node may malfunction for a number of

reasons, including hardware failure, software bugs, and

network issues. This paper emphasized hardware

malfunctions. We have taken into account each node's CPU's

temperature when modeling these failures. If a node's CPU

temperature exceeds the temperature threshold value, the

CPU temperature may increase exponentially and the node

may fail [26] [27].

The heating rate model for the PS is taken from [28] and

defined as:

For heating rate h greater than 0 and less than ih

 1_ () | , , , h

i if heating rate h A h h e   (18)

This mathematical function reflects the variation of

processor heating rate when computer boots

For h greater than ih and less than 1ih 

 1_ () | , , , ih

i if heating rate h A h h e   (19)

For t is greater than 1it  and less than 2it 

    1 1_ () | , , , sin ih

i i if heating rate h A h h A t t e      (20)

Where i denotes a set of positive integers and ih is a static

value, calculated by

 35ih
e 

ih
e designates the processor heating rate without any load,

(where ih
e =35°C);

1ih  contains an arbitrary value, and 2ih  is calculated by

2 1/i ih h    ;

A= amplitude, represents the peak value of processor heating

rate (< 68°C);

 specifies the period for which the processor accomplishes

the load.

/  used to calculate the first half-round of sinusoidal

function;

It is also feasible to arbitrarily alter A's value and to indicate

different types of consumption of the CPU in various time

frames. This heating rate model is used to predict the

deterioration of a PS.

4.5. Power Consumption Model for PSs

Most of the power consumption in the CDC is from disk

storage, network, cooling system, and computation

processing. The power model used in the literature [25][28]

is defined as follows:

    – * idle busy idlePM u PS PS PS U  (21)

Where PSidle denotes power consumed by idle PSs, PSbusy

denotes power consumed by a fully loaded PS and U denotes

CPU utilization.

5. PERFORMANCE ASSESSMENT

In this section, we've used simulated tests to assess the

CDSCKP scheme's efficacy. Additionally, we compared the

RCKP (Random Checkpointing Protocol) and WLCKP (Wu

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5372
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

Li based Checkpointing protocol) and proposed methods in

terms of recovering from unsuccessful tasks or virtual

machines (VSs), total bandwidth usage, total power

consumption, and task or VS rollback and recovery times.

5.1. Simulation Step

The performance of the proposed approach implemented and

evaluated on the platform having Intel(R) Core (TM) CPU

i5-7200 processor having a CPU speediness of 2.70 GHz and

storage of 8 GB. The system configuration for CDSCKP is

defined in Table 1.

Each job or assignment is evenly dispersed in size between

 [10 hours, 20 hours] with a 20-minute checkpoint

intermission. The system checkpoint image and the VS setup

image each have sizes of 1.78 GB and 1.28 GB, respectively

[3].

Table 2. System configuration for CDSCKP

5.2. Metrics

The following performance measures are used to gauge the

CDSCKP protocol's effectiveness:

Recovery Capability (%): This metric is determined as

follows to determine the percentage of tasks or VSs that are

successfully recovered:

 Recov

Recov 100

Total Number of tasks or VSs ered Sucessfully
erability

Total tasks or VSs Failure
  (22)

Total Bandwidth Usage (TBWU): - Used to compute the

total amount of bandwidth used during the CRR process. The

mathematical formula to calculate total bandwidth

consumption is defined below:

 
1 1

 _ _ , min _ _

n m

i j

i j

TBWC link count Host PS Do ator PS link capacity

 

  (23)

Total Power Consumption (TPC): - This metric is used to

find the power consumed by all the dominator PSs in the

CDC. The values for the power consumption model are

described in Table 2. The mathematical formula to compute

TEC is defined below:

 
1

 min _
n

i

i

TEC E Do ator PS


  (24)

Table 3. Values for energy consumptions for different CPU

types
Energy Consumption Parameters

CPU-Type dominator PS

idle

dominator

PS busy

8-core 160w 270w

12 to 15-core 210w 360w

Rollback and Recovery Time (RRT): - This metric is used to

calculate the rollback and recovery time taken by a failed

task. The mathematical formula is defined as follows: -

 
1 1

 _ , min _
n m

i j

i j

RRT time Host PS Do ator PS
 

 (25)

 5.3. Results

To measure the performance of the newly proposed method

we

comp

are it

by a

RCK

P

(Ran

dom Checkpointing Placement Method) and WLCKP (Wu-

Li based Checkpointing Placement method). In RCKP,

random dominator PSs are selected to place the checkpoint

image and message log. The WLCKP is existing method for

reducing the size of CDS based on id of PS.

5.3.1. Number of Reliable Dominator:

In this section, we calculated the number of dominator PS

obtained after applying proposed rules of CDS constriction.

From Fig. 4, it can be said that the CDSCKP is providing a

minimized number of dominator PS, which are most

appropriate and reliable for placing the checkpoint images of

tasks or VSs and message logs.

Platform Configuration

Type Specification

Minimum CPU heating rate 35oC

Maximum CPU heating rate 68oC

VSs 0 to 4

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5373
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

Fig. (4). Minimized Number of dominator PS

5.3.2. Measuring Successful Recoveries

The CDSCKP approach is used in this experiment to

calculate the percentage of successfully recovered tasks or

VSs during a predetermined time frame. Figure 5 shows how

the number of jobs or VSs affects the recoverability of

various VSs. The results show that the CDSCKP method

achieves a higher recoverability than the RCKP and WLCKP

protocols by an average of about 26% and 24%, respectively.

Additionally, the recoverability does not decrease as the

number of tasks rises, making the PESUCR approach

performance scalable.

Fig. (5). Recoverability of Varied number of Tasks

Fig. 6 illustrates how the recoverability of RCKP, WLCKP,

and CDSCKP changes as time goes on. For all numbers of

jobs, CDSCKP consistently yields superior recoverability

than the RCKP and WLCKP approaches. The effectiveness

of the approaches does not significantly deteriorate with

time.

0

20

40

60

80

20 40 60 40 100

N
u

m
b

er
 o

f
R

ed
u

ce
d

 N
o

d
e

(C
D

S
 N

o
d

e)

Number of Physical Servers

RCKP WLCKP CDSCKP

0

10

20

30

40

50

60

70

80

100 200 300 400 500

R
ec

o
v

er
y

 %

Number of Tasks

RCKP WLCKP CDSCKP

0

20

40

60

80

400 600 800 1000

R
ec

o
v

er
y

 %

Execution Time

Number of Tasks = 100

RCKP WLCKP CDSCKP

0

20

40

60

80

400 600 800 1000
R

ec
o

v
er

y
 %

Execution Time

Number of Tasks = 200

RCKP WLCKP CDSCKP

0

20

40

60

80

400 600 800 1000

R
ec

o
v

er
y

 %

Execution Time

Number of Tasks = 300

RCKP WLCKP CDSCKP

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5374
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

Fig. (6). Recoverability vs. Execution Times

The succeeding simulations assess recoverability when task

failure rates change. Failure rate is a measure of how

frequently a host or virtual server (VS) fails over a specific

time frame [25]. For 200 and 500 tasks, respectively the

recoverability of the system for failure rates of 0.01, 0.05,

0.1, and 0.5 is depicted in Fig. 7 (denoting low to high

failure rates).

Fig. (7). Recoverability Vs. Failure Rates

5.3.3. Measuring Bandwidth Usage

In this experiment, the bandwidth utilized to deploy

checkpoint images for tasks or VSs is measured. The

CDSCKP consume an average of approximately 79% less

bandwidth than the RCKP. Fig. 8 illustrates the total amount

of bandwidth used by different number of PSs.

Fig. (8). Total bandwidths used CRR Process

5.3.4. Measuring Power Consumption

This series of tests examines the CPU's power usage when

taking a placement checkpoint snapshot and sending it to the

dominator PS. Fig. 9 illustrates the total amount of power

used by different CPU types.

0

20

40

60

80

400 600 800 1000

R
ec

o
v

er
y

 %

Execution Time

Number of Tasks = 400

RCKP WLCKP CDSCKP

0

20

40

60

80

100

400 600 800 1000

R
ec

o
v

er
y

 %

Execution Time

Number of Tasks = 500

RCKP WLCKP CDSCKP

0

20

40

60

80

0.01 0.05 0.1 0.5

R
ec

o
v

er
y

 %

Failure Rates

Number of Tasks = 200

RCKP WLCKP CDSCKP

0

20

40

60

80

0.01 0.05 0.1 0.5

R
ec

o
v

er
y

 %

Failure Rates

Number of Tasks= 500

RCKP WLCKP CDSCKP

0

20

40

60

80

100

120

140

160

20 40 60 80 100B
a

n
d

w
id

th
 C

o
n

su
m

p
ti

o
n

Number of Physical Servers

RCKP CDSCKP

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5375
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

Fig. (9). Total energy consumed by different CPU types

5.3.5. Measuring Rollback and Recovery Time:

The time required for tasks or VSs to rollback and recover is

measured in this final set of trials (see Fig. 10). From the

result it can be illustrates that the CDSCKP is rollback and

recover the failed task in less time as compared to RCKP

method.

Fig. (10). Rollback and Recovery time of different Tasks

Thus, the simulation’s outcomes demonstrate that the

CDSCKP protocol is providing the higher recoverability,

consume less bandwidth than RCKP and less power than the

RCKP and WLCKP protocol. Additionally, CDSCKP takes

less time than RCKP to resume execution after rolling back

to the last saved checkpoint.

6. CONCLUSION

In order to increase the dependability of VS-based services,

this study suggests a CDS-based scheme for building a

virtual backbone over the DCN topology. This scheme is

then used to produce a CRR-based fault tolerance scheme

called CDSCKP. In order to obtain a CDS for the data center

topology graph, the work suggests various guidelines based

on the rate of CPU heating, storage capacity, and vertex

coverage. The PSs with the lowest CPU heating rate, the

greatest storage, and the highest vertex degree are chosen to

build the CDS, after which the checkpoint image of the task

or VS as well as the message log are put on these CDS

nodes. Utilizing measures like recoverability, total

bandwidth, power consumption, and rollback and recovery

times, the CDSCKP's performance is assessed. After that, it

is compared with an RCKP and WLCKP. The simulation

results show that compared to previous approaches, the

CDSCKP offers superior dependability and requires less

time and resources for rollback and recovery.

REFERENCES

[1] Kumari P, Kaur P. A survey of fault tolerance in cloud

computing. Journal of King Saud University-Computer

and Information Sciences. 2021 Dec 1;33(10):1159-76.

[2] Wang T, Su Z, Xia Y, Hamdi M. Rethinking the data

center networking: Architecture, network protocols, and

resource sharing. IEEE access. 2014 Dec 18; 2:1481-96.

[3] J. Guo, F. Liu, J.C.S. Lui, H. Jin, “Fair network

bandwidth allocation in IaaS datacentres via a

cooperative game approach,” Computer

Communications, Vol. 24, No. 2, pp. 873-886, April

2016.

[4] Z. Amin, H. Singh, N. Sethi, “Review on fault tolerance

techniques in cloud computing,” International Journal

of Computer Applications, Vol. 116, No. 18, April

2015.

[5] L.P. Saikia, Y.L. Devi "Fault tolerance techniques and

algorithms in cloud computing," International Journal

of Computer Science & Communication Networks,

Vol. 4, No. 1, pp. 01-08, 2014.

[6] A.Zhou, S.Wang , B.Cheng , Z. Zheng, F. Yang, R. N.

Chang, M.R. Lyu, R. Buyya, "Cloud service reliability

enhancement via virtual machine placement

optimization," IEEE Transactions on Services

Computing Vol. 10, No.6,pp. 902-913, January 2016

[7] A. Zhou, Q. Sun, and J. Li, “Enhancing Reliability via

Checkpointing in Cloud Computing Systems,” pp. 108–

117, 2017.

[8] Zhao, Juzi, et al. "Elastic reliability optimization

through peer-to-peer checkpointing in cloud

computing." IEEE Transactions on Parallel and

Distributed Systems 28.2 (2017): 491-502.

[9] Han, Li, et al. "Checkpointing workflows for fail-stop

errors." IEEE Transactions on Computers 67.8 (2018):

1105-1120.

0

2000

4000

6000

8000

10000

12000

20 40 60 80 100

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Number of Physical Servers

RCKP WLCKP CDSCKP

0

2000

4000

6000

8000

10000

100 200 300 400 500

R
o

ll
b

a
ck

 a
n

d
 R

ec
o

v
er

y
 T

im
e

(m
s)

Number of Tasks

RCKP CDSCKP

https://scholar.google.co.in/citations?user=MfjcVE4AAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=o02W0aEAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=DX7S46kAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=oVDUsyoAAAAJ&hl=en&oi=sra
https://ieeexplore.ieee.org/author/37085650351
https://ieeexplore.ieee.org/author/37599736600
https://ieeexplore.ieee.org/author/37403945300
https://ieeexplore.ieee.org/author/37538781600
https://ieeexplore.ieee.org/author/37538781600
https://ieeexplore.ieee.org/author/37399827300
https://ieeexplore.ieee.org/author/37399827300
https://ieeexplore.ieee.org/author/37271654600

An Optimal Checkpointing with Message Logging Protocol for Fault Tolerance of Distributed Applications in the Cloud Data Center

Section A-Research paper

5376
Eur. Chem. Bull. 2023, 12(Special Issue 4), 5363 –5376

[10] Chinnathambi, Sathya, Agilan Santhanam, Jeyarani

Rajarathinam, and M. Senthilkumar. "Scheduling and

checkpointing optimization algorithm for Byzantine

fault tolerance in cloud clusters." Cluster

Computing 22, no. 6 (2019): 14637-14650.

[11] Amoon, Mohammed, Nirmeen El-Bahnasawy, Samy

Sadi, and Manar Wagdi. "On the design of reactive

approach with flexible checkpoint interval to tolerate

faults in cloud computing systems." Journal of Ambient

Intelligence and Humanized Computing 10, no. 11

(2019): 4567-4577.

[12] Cheraghlou, Mehdi Nazari, Ahmad Khademzadeh, and

Majid Haghparast. "New fuzzy-based fault tolerance

evaluation framework for cloud computing." Journal of

Network and Systems Management 27, no. 4 (2019):

930-948.

[13] Rezaeipanah, Amin, Musa Mojarad, and Ahad Fakhari.

"Providing a new approach to increase fault tolerance in

cloud computing using fuzzy logic." International

Journal of Computers and Applications (2020): 1-9.

[14] Kumari P, Kaur P. Checkpointing Algorithms for Fault-

Tolerant Execution of Large-Scale Distributed

Applications in Cloud. Wireless Personal

Communications. 2021 Apr;117(3):1853-77.

[15] S.K. Mishra, D. Puthal, B. Sahoo, P. P. Jayaraman, S.

Jund, A.Y. Zomaya, R. Ranjan, "Energy-efficient VS-

placement in CDC," Sustainable computing: informatics

and systems, Vol. 20, pp. 48-55, December 2018.

[16] N.K. Sharma, P. Sharma, R. M. R. Guddeti, "Energy

efficient quality of service aware virtual machine

migration in cloud computing," in 4th International

Conference on Recent Advances in Information

Technology (RAIT), IEEE, March 2018.

[17] M. Adda, A. Peratikou, "Routing and fault tolerance in

Z-fat tree," IEEE Transactions on Parallel and

Distributed Systems, Vol. 28, No .8, pp. 2373-2386,

February 2017.

[18] R.K. Devi, G. Murugaboopathi, P. Vijayakumar. "A

Graph-based Mathematical Model for an Efficient Load

Balancing and Fault tolerance in Cloud Computing," in

Second International Conference on Recent Trends and

Challenges in Computational Models (ICRTCCM),

IEEE, February 2017.

[19] P.K. Jaggi, A.K. Singh. "Movement-Based

Checkpointing and Message Logging for Recovery in

MANETs," Wireless Personal Communications,

Vol. 83, No.3, pp. 1971-1993, March 2015.

[20] J. Yu, N. Wang, G. Wang, D. Yu, “Connected

dominating sets in wireless ad hoc and sensor

networks–A comprehensive survey,” International

Journal of Computer Applications, Vol. 36, No. 2, pp.

121-134, January 2013.

[21] Singh, Awadhesh Kumar, and Parmeet Kaur Jaggi.

"Asynchronous rollback recovery in cluster based multi

hop mobile ad hoc networks." International Journal of

Enhanced Research in Management &Computer

Applications, ISSN (2013): 2319-7471.

[22] Kshemkalyani, Ajay D., and Mukesh

Singhal. Distributed computing: principles, algorithms,

and systems. Cambridge University Press, 2011.

[23] Mansouri H, Pathan AS. Checkpointing distributed

computing systems: An optimisation approach.

International Journal of High Performance Computing

and Networking. 2019;15(3-4):202-9.

[24] J. Wu, H. Li, "On calculating connected dominating set

for efficient routing in ad hoc wireless networks," In

Proceedings of the 3rd international workshop on

Discrete algorithms and methods for mobile computing

and communications, ACM, pp. 7-14, August 1999.

[25] X. Dai, J. M. Wang,B. Bensaou, "Energy-efficient

virtual machines scheduling in multi-tenant data

centers," IEEE Transactions on Cloud Computing,

Vol. 4, No. 2, pp. 210-221, September 2015.

[26] J. Liu, S. Wang, A. Zhou, S.A.P. Kumar, F. Yang, R.

Buyya, "Using proactive fault-tolerance approach to

enhance cloud service reliability," IEEE Transactions

on Cloud Computing, Vol. 6, No. 4, pp. 1191-1202,

May 2016.

[27] Kumari P, Kaur P. Topology-aware virtual machine

replication for fault tolerance in cloud computing

systems. Multiagent and Grid Systems. 2020 Jan

1;16(2):193-206.

[28] Kumari P, Kaur P. Connected Data Set-based Virtual

Machine Replication in Cloud Computing. International

Journal of Performability Engineering. 2020 Sep

1;16(9).

[29] Kumari P, Dubey V. Implementation of Fuzzy Rule-

Based Inference System for Adaptive Movie

Recommendation System. Computer Integrated

Manufacturing Systems. 2022 Jan 30;28(1):121-35.

[30] Dubey V, Kumari P, Ojha S, Singh OP, Mishra GR.

Issues Confronted By Street Food Vendors During

COVID-19 First Wave In India-Word Cloud Analysis.

Webology. 2021;18(1):1990-6.

https://www.sciencedirect.com/science/article/pii/S2210537917302536#!
https://www.sciencedirect.com/science/article/pii/S2210537917302536#!
https://www.sciencedirect.com/science/article/pii/S2210537917302536#!
https://www.sciencedirect.com/science/article/pii/S2210537917302536#!
https://www.sciencedirect.com/science/article/pii/S2210537917302536#!
https://www.sciencedirect.com/science/article/pii/S2210537917302536#!
https://www.sciencedirect.com/science/article/pii/S2210537917302536#!
https://www.sciencedirect.com/science/article/pii/S2210537917302536#!
https://scholar.google.co.in/citations?user=Wg-9a_AAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=i3-AnE0AAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=hiQxuHYAAAAJ&hl=en&oi=sra

