E®

THE CONVEXITY NUMBER OF A LINE GRAPH OF

 A GRAPH AND JUMP GRAPH OF A GRAPH AND APPLICATIONS OF CONVEX SETS IN MICRO CARDIAC NETWORK GRAPH${ }^{1}$ M. Sivabalan, ${ }^{2}$ S. Sundar Raj and ${ }^{3}$ V. Nagarajan,
${ }^{1}$ Register Number.12567, Research Scholar, Department of Mathematics, S.T. Hindu College, Nagercoil - 629 002, India. sivabalanvkc@gmail.com
${ }^{2}$ Department of Mathematics, Vivekananda College, Agasteeswaram - 629 701, India.
${ }^{3}$ Department of Mathematics, S.T. Hindu College, Nagercoil - 629 002, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

Abstract

The convexity number $C(G)$ of G is defined as the maximum cardinality of a proper convex set of G, that is $C(G)=\max \{|S|: S$ is a convex set of G and $S \neq V(G)\}$. In this paper convexity number of a Line graph of a graph, jump graph of a graph are determined and application of convex sets in micro cardiac network graph is given. Keywords: convex, convexity number, line graph, jump graph, micro cardiac network graph.

AMS Subject Classification: 05C12.

1.Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to [2]. A vertex v is adjacent to another vertex u if and only if there exists an edge $e=u v \in E(G)$. If $u v \in E(G)$, we say that u is a neighbor of v and denote by $N_{G}(v)$, the set of neighbors of v. A vertex v is said to be universal vertex if $\operatorname{deg}_{G}(v)=p-1$. A vertex v is called an complete vertex if the subgraph induced by v is complete.

A shell graph is a cycle C_{p} with $(p-3)$ chords sharing a common end vertex called the apex. Bistar is the graph obtained by joining the p pendent edges to both the ends of K_{2}. The length of a path is the number of its edges. Let u and v be
vertices of a connected graph G. A shortest $u-v$ path is also called a $u-v$ geodesic. The (shortest path) distance is defined as the length of a $u-v$ geodesic in G and is denoted by $d_{G}(u, v)$ or $d(u, v)$ for short if the graph is clear from the context. For a set S of vertices, let $I[S]=\cup_{x, y \in S} I[x, y]$. A set $S \subset V$ is called a convex set of G if $I[S]=S$

These concepts were studied in $[2,3]$.
The convexity number $C(G)$ of G is defined as the maximum cardinality of a proper convex set of G, that is $C(G)=\max \{|S|: S$ is a convex set of G and $S \neq$ $V(G)\}$. A convex set S in G with $|S|=C(G)$ is called a maximum convex set or C-set. . The line graph $L(G)$ of a graph G whose vertices are edges of G and where two vertices of $L(G)$ are adjacent if and only if the corresponding edges are adjacent in G. We call the complement of line graph $L(G)$ as the jump graph $J(G)$ of G.. The jump graph $J(G)$ of a graph G is a graph whose vertices are edges of G and where two vertices of $J(G)$ are adjacent if and only if the corresponding edges are not adjacent in G.
The following Theorems are used in sequel.
Theorem 1.1. Let G be a connected graph of order $p \geq 3$. Then $2 \leq C(G) \leq p-1$.
Theorem 1.2. Let G be a connected graph of order $p \geq 3$. Then $C(G)=p-1$ if and only if G contains a complete vertex.
Theorem 1.3. Let G be a cycle of order $p \geq 3$. Then $C(G)=\left\lceil\frac{p}{2}\right\rceil$.

2. The Convexity Number of a Line graph of a graph

Theorem 2.1. For the star graph $G=K_{1, p-1}, C(L(G))=p-2$.
Proof. Let $V(G)=\left\{x, v_{1}, v_{2}, \ldots, v_{p-1}\right\}$. Then $L(G)$ has $p-1$ vertices. Let $V(L(G))=$ $\left\{e_{1}, e_{2}, \ldots, e_{p-1}\right\}$. Since $L(G) \cong K_{p-1}$, By Theorem 1.2, $C(L(G))=p-2$.
Theorem 2.2. For the fan graph $=F_{p}(p \geq 4), C(L(G))=p-1$.
Proof. Let $V(G)=\left\{x, v_{1}, v_{2}, \ldots, v_{p-1}\right\}$. Then $L(G)$ has $2 p-3$ vertices. Let $V(L(G))=\left\{e_{1}, e_{2}, \ldots, e_{p-2}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{p-1}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-2)$ and $f_{i}=x v_{i}(1 \leq i \leq p-1)$. Since $f_{1}, f_{2}, \ldots, f_{p-1}$ are adjacent in $G .\left\langle f_{1}, f_{2}, \ldots, f_{p-1}\right\rangle$ is the complete graph K_{p-1}. Therefore $S=\left\{f_{1}, f_{2}, \ldots, f_{p-1}\right\}$ is a convex set in $L(G)$ and so $C(L(G)) \geq p-1$. We prove that $C(L(G))=p-1$. On the contrary. Suppose that $C(L(G)) \geq p$. Then there exists a convex set S^{\prime} in $L(G)$ such that $\left|S^{\prime}\right| \geq p$. Then $I_{L(G)}\left[S^{\prime}\right] \neq S^{\prime}$, which is a contradiction. Therefore $C(L(G))=p-1$.

Theorem 2.3. For the wheel graph $=W_{p}(p \geq 4), C(L(G))=p-1$.
Proof. Let $V(G)=\left\{x, v_{1}, v_{2}, \ldots, v_{p-1}\right\}$. Then $L(G)$ has $2 p+2$ vertices. Let $V(L(G))=\left\{e_{1}, e_{2}, \ldots, e_{p-2}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{p-1}\right\} \quad$ where $\quad e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-$ 2), $e_{p-1}=v_{p-1} v_{1}$ and $f_{i}=x v_{i}(1 \leq i \leq p-1)$. Since $f_{1}, f_{2}, \ldots, f_{p-1}$ are adjacent in G. $\left\langle f_{1}, f_{2}, \ldots, f_{p-1}\right\rangle$ is the complete graph K_{p-1}. Therefore $S=\left\{f_{1}, f_{2}, \ldots, f_{p-1}\right\}$ is a
convex set in $L(G)$ and so $C(L(G)) \geq p-1$. We prove that $C(L(G))=p-1$. On the contrary. Suppose that $C(L(G)) \geq p$. Then there exists a convex set S^{\prime} in $L(G)$ such that $\left|S^{\prime}\right| \geq p$. Then $I_{L(G)}\left[S^{\prime}\right] \neq S^{\prime}$, which is a contradiction. Therefore $C(L(G))=$ $p-1$.

Theorem 2.4. For the cycle $=C_{p}(p \geq 3), C(L(G))=\left\lceil\frac{p}{2}\right\rceil$.
Proof. Let $V(G)=\left\{x, v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then $L(G)$ has p vertices. Let $V(L(G))=$ $\left\{e_{1}, e_{2}, \ldots, e_{p}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-1)$ and $e_{p}=v_{p} v_{1}$. Since $L(G) \cong C_{p}$, by Theorem 1.3, $C(L(G))=\left\lceil\frac{p}{2}\right\rceil$.
Theorem 2.5. For the path $=P_{p}(p \geq 3), C(L(G))=p-2$.
Proof. Let $V(G)=\left\{x, v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then $L(G)$ has $p-1$ vertices. Let $V(L(G))=$ $\left\{e_{1}, e_{2}, \ldots, e_{p-1}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-1)$. Since $L(G) \cong P_{p-1}$, by Theorem $1.2, C(L(G))=p-2$.
Theorem 2.6. For the shell graph G of order $(p \geq 5), C(L(G))=p-1$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then $L(G)$ has $2 p-3$ vertices. Let $V(L(G))=$ $\left\{e_{1}, e_{2}, \ldots, e_{p}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{p-3}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-1), e_{p-1}=v_{p-1} v_{1}$ and $f_{i}=v_{1} v_{i}(3 \leq i \leq p-1)$. Since $f_{1}, f_{2}, \ldots, f_{p-1}$ are adjacent, $<e_{1}, e_{p}, f_{1}, f_{2}, \ldots$, $f_{p-3}>$ is the complete graph K_{p-3}. Therefore $S=\left\{e_{1}, e_{p}, f_{1}, f_{2}, \ldots, f_{p-1}\right\}$ is a convex set in $L(G)$ and so $C(L(G)) \geq p-1$. We prove that $C(L(G))=p-1$. On the contrary. Suppose that $C(L(G)) \geq p$. Then there exists a convex set S^{\prime} in $L(G)$ such that $\left|S^{\prime}\right| \geq p$. Then $I_{L(G)}\left[S^{\prime}\right] \neq S^{\prime}$, which is a contradiction. Therefore $C(L(G))=$ $p-1$.
Theorem 2.7. For the sun let graph G of order $2 p(p \geq 3), C(L(G))=2 p-1$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$. Then $L(G)$ has $2 p$ vertices. Let $V(L(G))=\left\{e_{1}, e_{2}, \ldots, e_{p}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{p}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-1), e_{p}=$ $v_{p} v_{1}$ and $f_{i}=v_{i} v_{i}(1 \leq i \leq p)$. Since $L(G)$ contains complete vertex and by Theorem 1.2, $C(L(G))=2 p-1$.

Theorem 2.8. For the comb graph $=P_{p} \odot K_{1}(p \geq 3), C(L(G))=2 p-2$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$. Then $L(G)$ has $2 p-1$ vertices. Let $V(L(G))=\left\{e_{1}, e_{2}, \ldots, e_{p-1}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{p}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-1)$, and $f_{i}=v_{i} u_{i}(1 \leq i \leq p)$. Since $L(G)$ contains complete vertex and by Theorem 1.2, $C(L(G))=2 p-2$.
Theorem 2.9. For the complete graph $G=K_{r, s}(r<s$ and $r, s \geq 3), C(L(G))=s$.
Proof. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $U=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ be the two bipartite sets of G. Then $L(V(G))$ has $r s$ vertices. Let $V(L(G))=\left\{e_{i j}\right\}(1 \leq i \leq r, 1 \leq j \leq s)$, where

THE CONVEXITY NUMBER OF A LINE GRAPH OF A GRAPH AND JUMP GRAPH OF A GRAPH AND APPLICATIONS OF CONVEX SETS IN MICRO CARDIAC NETWORK GRAPH

Section A-Research paper
$e_{i j}=v_{i} u_{j}$. For each $v_{i} \in V(1 \leq i \leq r)$, there are s edges incident at $v_{i}(1 \leq i \leq r)$. Hence it follows that for each $v_{i} \in V(1 \leq i \leq r)$, there is a complete graph K_{s} in $L(G)$. Hence it follows that $C(L(G)) \geq s$. Since $V \cap U=\emptyset$, there does not exists any complete graph of order at least $s+1$ in $L(G)$. Therefore $C(L(G))=s$.

Theorem 2.10. For the Ladder graph $G=L_{p}$ of order $2 p, C(L(G))=3 p-4$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$. Then $V(L(G))$ has $3 p-2$ vertices. Let $V(G)=\left\{e_{1}, e_{2}, \ldots, e_{p-1}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{p-1}\right\} \cup\left\{g_{1}, g_{2}, \ldots, g_{p}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-1), f_{i}=u_{i} u_{i+1}(1 \leq i \leq p-1)$ and $g_{i}=u_{i} v_{i} \quad(1 \leq i \leq$ $p)$. Then $S=V(L(G))-\left\{f_{p-1}, g_{p}\right\}$ is a convex set of $L(G)$ such that $C(L(G)) \geq$ $3 p-4$. To prove $C(L(G))=3 p-4$. Suppose $C(L(G)) \geq 3 p-3$. Then there exists a convex set S^{\prime} of $L(G)$ such that $\left|S^{\prime}\right| \geq 3 p-3$. Then $I_{L(G)}\left[S^{\prime}\right] \neq V(L(G))$, which is a contradiction. Therefore $C(L(G))=3 p-4$.

3 The Convexity number of a Jump graph of a graph

Theorem 3.1. For the path $=P_{p}(p \geq 5), C(J(G))=p-3$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then $J(G)$ has $p-1$ vertices. Let $V(J(G))=$ $\left\{e_{1}, e_{2}, \ldots, e_{p-1}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-1)$. Let $S=\left\{e_{1}, e_{3}, e_{4}, \ldots, e_{p-3}\right.$, $\left.e_{p-1}\right\}$ is a convex set of $J(G)$ such that $C(J(G)) \geq p-3$. We prove that $C(J(G))=$ $p-3$. On the contrary, suppose that $C(J(G)) \geq p-2$. Then there exists a convex set S^{\prime} in $J(G)$ such that $\left|S^{\prime}\right| \geq p-2$. Then $I_{J(G)}\left[S^{\prime}\right] \neq V(J(G))$, which is a contradiction. Therefore $C(J(G))=p-3$.
Theorem 3.2. For the cycle $=C_{p}(p \geq 5), C(J(G))=\left\lceil\frac{p}{2}\right\rceil$.
Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then $J(G)$ has p vertices. Let $V(J(G))=\left\{e_{1}, e_{2}, \ldots\right.$, $\left.e_{p}\right\}$ where $e_{i}=v_{i} v_{i+1}$ and $e_{p}=v_{p} v_{1}$. Since $J(G) \cong C_{p}$ and by Theorem 1.3, $C(J(G))=\left\lceil\frac{p}{2}\right\rceil$.
Theorem 3.3. For the fan graph $=F_{p}(p \geq 5), C(J(G))=p-4$.
Proof. Let $V(G)=\left\{x, v_{1}, v_{2}, \ldots, v_{p-1}\right\}$. Then $J(G)$ has $2 p-3$ vertices. Let $V(J(G))=\left\{e_{1}, e_{2}, \ldots, e_{p-2}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{p-1}\right\}$ where $e_{i}=v_{i} v_{i+1}(1 \leq i \leq p-2)$ and $f_{i}=x v_{i} \quad(1 \leq i \leq p-1)$. Since $<e_{1}, e_{p-2}, f_{3}, f_{4}, \ldots, f_{p-4}>$ is the complete graph K_{p-4}. Therefore $S=\left\{e_{1}, e_{p-2}, f_{3}, f_{4}, \ldots, f_{p-4}\right\}$ is a convex set of $J(G)$ and so $C(J(G)) \geq p-4$. We prove that $C(J(G))=p-3$. On the contrary, suppose that $C(J(G)) \geq p-3$. Then there exists a convex set S^{\prime} in $J(G)$ such that $\left|S^{\prime}\right| \geq p-3$. Then $I_{J(G)}\left[S^{\prime}\right] \neq V(J(G))$, which is a contradiction. Therefore $C(J(G))=p-4$.

4. Application of convex sets in micro cardiac network graph

The human heart is a muscular organ that is about the size of a closed fist and is in charge of pumping blood throughout the body. Deoxygenated blood enters the body
through the veins, where it is oxygenated in the lungs before being pushed into the many arteries, which transport the blood throughout the body and supply nutrients and oxygen to the body's tissues. In the thoracic cavity, the heart is positioned medial to the lungs and posterior to the sternum. The base of the heart's better end is where the aorta, vena cava, and pulmonary arteries are all joined. The apex, or bottom point of the heart, is right above the diaphragm.. The midline of the body is where the peak of the heart, which faces the left, is situated. The left side of the body houses the heart, therefore approximately two thirds of the mass of the heart starts on the left side, with the remaining third on the right. Figure 4.1 in [1] illustrates the many parts of the human heart.. The maximum cardinality of a convex set S shows the region in which the blood circulation is more in the valves connecting the heart.

Figure 4.1
Micro Cardiac Network Graph

For the graph G given in Figure 4.1, $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{11}, v_{12}, v_{13}, v_{14}\right\}$ is a maximum convex set.

Conclusion

In this article, we studied the convexity number of line graph of a graph and jump graph of a graph. Finally, we give an application of convex set in micro cardiac Network Graph.

Acknowledgements

The authors thank the referees for their valuable suggestions and comments.

References

[1] Basavaprasad B and Ravindra S. Hegadi, "Graph Theoritical Approaches for Image

THE CONVEXITY NUMBER OF A LINE GRAPH OF A GRAPH AND JUMP GRAPH OF A GRAPH AND APPLICATIONS OF CONVEX SETS IN MICRO CARDIAC NETWORK GRAPH

Section A-Research paper
Segmentation", Journal of Avishkar-Solopur University Research Journal, Volume 2, 2012.
[2] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA,
(1990).
[3] G. Chartrand, C. Wall and P. Zhang, The Convexity number of a Graph, Graphs and

Combinatorics, 18(2002), 209-217.
[4] P.Duchlet, Convex sets in Graphs, II. Minimal path convexity, J. Comb. Theory serB,44(1988), 307-316.

