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Abstract:

In the research paper, Klein Gordon Equation which is a non-linear partial differential equation
of order two is discussed by using HS-3W method. A variety of physical phenomena are
discussed in the field of Engineering and sciences by using this equation. Space and time
approximation is done by using the proposed technique and converting the equation into system
of algebraic equations and the non-linearities present in the equation is solved by using
Quasilinearisation approach. To check the applicability of the method, proposed scheme is
applied on various examples which shows the methods accuracy and compatibility with good
results. By using MATLAB, graphical representation of exact, approximate solution and
absolute error is shown.

Keywords: Nonlinear Klein Gordon equation (KGE), Partial differential equation, Haar scale-
3 wavelet method (HS3WM), Quasilinearisation technique.

1. Introduction
In various fields such as plasma physics, solid state physics, fluid physics, chemical kinetics
and mathematical biology non-linear phenomena plays a vital role for discussing the solution
of the physical problems developed in these fields which are represented in terms of partial
differential equations. To handle with these kinds of difficulties different numerical and
analytical method are used for finding the solution of these equations. As per the literature
review, it observed that wavelet-based methods are one of the compatible tools for searching
the solution of these kinds of real-life problems. As it is enough sufficient to tackle with these
kinds of complexities. Several articles have been already published to discuss the applicability
of wavelet method for evaluating the solution non-linear and higher order complex differential
equations. Haar wavelet is simplest wavelet of the wavelet family with a simple structure and
it compact as well as orthonormal. In the present work, a nonlinear KGE is discussed using
HS-3W method. It has application in the sector of applied physics like as phenomena of field
theory and quantum mechanics. Basically, KGE belongs to family of wave equations used to
study the behaviour of particle in motions at high velocities with high energy.
Nonlinear KGE expressed as:

o%u  9%u

7 " THu— eu? =m(z,t), (z1)€[0,1]x][0,T] 1)

Having initial constraints as:
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u(z,0) = n(2) 2
2(2,0) = n,(2) ®)

and the boundary constraints

u(0,2) =y, (¢), £ €[0,T] (4)
u(1,2) =y,(¢), t€l[0,T] o)

Where u,e,m are known constants, 1,(2),n,(2),y1(#), v,(t), m(z,t) are the given
functions and here value of u(z, %) is to be determined.

Different researchers, put a lot of efforts to discuss the structure of this equation by using
multiple numerical methods such as Radial Basis function is used to discuss one dimensional
non-linear KGE with quadratic and cubic non-linearity [1], Adomain decomposition [5-
6],Decomposition method [3-4], VIM [9-10], HPM[8], Auxiliary equation method [2],
Polynomial wavelets [7], Legendre wavelet [ 13-14], Hermite wavelet operational matrix [11],
Laguerre wavelet [12], Chebyshev Wavelet Method (CWM) [15], Haar wavelet collocation
method [16].

As per the observation, non-linear KGE is not yet discussed by Haar scale 3 wavelet method
in the previous work that motivated us to generate a method to solve this kind of equation and
results of HS-3WM methods are more accurate as compare to HS-2WM.

2. Structure of HS-3W with their integrals:
The expressions for HS-3W family [18], [20], [28] in mathematical way is represented as:

Haar scaling function

. _ et as<m<»b (6)
hi(m) = ¢ (m) = { 0 elsewhere

for i=1
Haar Symmetric Wavelet Function (7

-1 a;1 (D) <m < a0

; 1 2 a;, (i) <m < ay;(i)

h; =vi(3m—-k) = — 12\t) = 13\

() =VIEmM-) =50 i) = m < an()
0 elsewhere

fori=24,.3p—-1
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(8)

Haar Anti-Symmetric Wavelet Function
1 a;1(0) <m < aq,(0)
; 3) 0 a;, (1) <m < ayz(0)
h;(m) =¢?*(3'm—k)= |= 1200 = 1332
() = 9%( ) \/; -1 a;3(0) < m < aqu(i)
0 elsewhere

for i=36,..3p

3k+1

, K .
a12() = (b - @)%, 2, () = (b — @) 2
, (3k+2) , k+1
a13() = (b~ )22, 2y, () = b - )2,
Herep=3/,k=0,12,..,p—1, j=0,1.2,....
Now, over the interval [A, B) one can easily integrate the equations by using Riemann Liouville
Integral formula for desired number of times as defined below

3

_a .
¢is(q) = foz $15-1(q)dq = res+n’ 4 €lab) fori=1
0; otherwise

ot =[] ol 1(q)dq =

for i=2468-,3p—1

(piz,s(CI) = foz ¢i2,s—1(q) dq =

for i=3579,-,3p
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(0 for q€[0,a11()
F(s_+ 5la- a1 (D) for q € [a11(i),a12(D))
%< F(sli 5 [-(a - aﬂ(i)zs +3(q - alz(i)):] | for q € [ar(D,as3(0) |
re (@ an®) +3(4 - 2®) ~3(q ~ais®)] for q € [a3(), a14(D))
r(sl+ 50 -2u0) +3(0 - 220)" = 3(a - 213D)" + (4 - 214@)] for g € [a1aD, D

(0 for q € [0,a1,())
o (@ —an®)’ for q € [ass (D), a5(D)
2] s l@ = an®) = (4 - a®)’] for q € [ay(D),a13(D)
s (0 -2 ®) - (g - 20) - (g - @ 0)' for q € [asa(1),a14(D)
e l(@ —au®) = (4 -a®)" ~ (4~ as®) + (4 —au®) ] for q € [au®,1)

\
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3. Approximation of solution
If u(z,t) = L,(R), using Haar Scale 3 wavelets it can be approximated numerically as

w0 = ) ) auhi(@ha(t)

i=1n=1
By using the method a;;,'s will be evaluated. But a truncated series up to 3p X 3p terms can
be considered for computational purpose. By considering the 3p X 3p terms, we get
3p 3p

w5 = (20 = ) Y ay hi(2ha(6)

i=1n=1

where p =3/, j =0,1,2,...

4. Quasi-linearisation process

For linearizing nonlinear differential equations, quasi-linearization strategy is used which is a
generalized form of the Newton Raphson method. Quadratically, it converges to the exact
value. If we have a non-linear term, we must employ the recurrence relation shown below:

W= fu?) = f(x,u?)
d
[.uz]s+1 = [.uz]s + [:us+1 - .us] (% (:uz))

(#2)s+1 = (.uz)s + (Uss1 — Us) 21
(ﬂ2)5+1 = (#2)5 + 22U ()5 — 2(.“2)5

(,uz)s+1 = 2(/")5+1ﬂs - (:uz)s

5. Method of Solution
Space and time variables containing Higher order derivatives are approximated with the help
of HS-3W' as explained below:

3p 3p

Upree (2, 1) = Z Z Ain hi(2) hy(£) 9)

i=1n=1
To perform integration with respect to z, the lower limit is set to zero, while the upper limit is z, the
above equation converted in to

3p 3p

uztt(ZJ t) = Z Z Ain Pl,/i(z) hn(;t) + (pztt(oﬂ t) (10)

i=1n=1
Again, integration with respect to z, the lower limit is set to zero, while the upper limit is, the value

of u,.+(0,%) is given by

3p 3p

Uzt (0,14) = (utt(l;’t) — (0, ’f)) - Z Z Ain P2i(1) hy (2) (11)

i=1n=1

and equation becomes,
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3p 3p
Uyer(2,1) = Z Z Ain ( P1,¢(Z) - Pz,i(l)) h, (%) + (utt(l' 1) — uz (0, ’L')) (12)
i=1n=1

Again, integration with respect to z, the lower limit is set to zero, while the upper limit is z

Ut (2,8) = TP TP am( Poi(2) — 2 Pyi(1) hn(8) + zuge (1, £) + (1 -
7) (0, %)

between the limit O to £, integrating w.r.t t and after that on applying the boundary conditions,
we get

ue(z,£) = X2 B0 ain( Poi(2) — 2 Pyi(1)) Pyp(t) + 2 (ue(1,£) — (1) +
1- Z)( u.(0,2) — 1/)2(0)) + Y, (2)

Integrate w.r.t £ in between the given limit implies

(13)

(2 £) = 525 @i (Pou(@) = 2Pou(D)) Ponlt) +2 (6:(8) — £(0))

ztP,(1) + (1= 2)(§:(£) = §1(0)) = (1 — 2) £, (0) + £, (2) (14)
On Differentiating the above equation with respect z two times,
Uy (z,t) = 213:1 131p1 Ain h'(Z)PZ,n(t) + t(lpz)zz(z) (15)

S I @in (Poi(2) = 2 Pou(D) hn(8) + 2(2(8)),, + (1 = (D)), +

a (Z?L 131p1 Ain ( Pi(2) — z Pz,i(l)) Pyn(®) +2(&(£) — £,(0)) — zt P, (1) + (1 -
D —6(0) = (1= 2 £0) + £,(2)) = T T2y @un he(DPa(8) +
EW2)72(2) +m(z,%)

TR o [(Pos@) = 2Pos(D)) ha(8) + & ((Pos2) = 2Pou(D)) Pon()) -
hi(2)Py(£)| =

m(z,£) + t(W)52(2) — (2(&(8),,, + A -D(&E®),,) - (z E@) - &(0)) -
2 ,(1) + (1= 2)(&(8) — £(0) = (1 = 2) 39, (0) + £3,(2))

. . . 2r— 25—
Now discretizing the variable as z - z, ,t > t; where x, = 2 ! , tg = Zpl, r,s =
1,2, ... 3p in the above equations we get the following system of algebraic equations
3p 3
21p1 np 1 XinRinrs = F(r,s) (16)

Where Ri,n,r,s = [( Pz,i(zr) - Zr Pz,i(l)) hn(ts) ta (( PZ,i(ZT) -

2 Pai(D) Pon(t) = haz)Pon(t)]
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F(r,s) = m(z, ;) + tW2)(2) — (2:(8(8)),,, + (1 -2z)(&()),,) -

@ (zr (&(8) = £(0)) = zr £, Yo (1) + (1 = 2) (62(£) — £4(0)) — (1 — 2,) £1,(0) +
tp,(z) ) (17)
The system mentioned above is simplified into a system of algebraic equations, which is then
reduced to the following set of 4D-arrays

A3px3pR3px3p><3px3p = F3p><3p

Using the given transformations, the aforementioned system of arrays is transformed and
reduced to the following matrix system.

Aip = bl and F;~S = Gﬂ

B1x3p)?S 3p)?x(3p)? = G1x(3p)?
Where A =3p(i—1)+land u=3p(r—1) +s

The values of b, can be calculated for various n values (n=1, 2, ...) using MATLAB program
and the Thomas algorithm to solve the system of equations mentioned above. By applying the
transformation mentioned earlier, the original wavelet coefficients a;, can be retrieved. To
obtain the final solution of the problem, these coefficients will be utilized in the equations for
different t,, values (n=0, 1, 2, ...).

6. Error analysis

To assess the accuracy of the proposed technique for non-linear KGE, it is applied at different
levels of resolutions to examine its compatibility. The present method is used to calculate
absolute errors, Ly error, and L,error for various problems using the formulas discussed above.:

Absolute error =|upyqct (2, ts) — Unum (Zr, ts)| (18)

Lo = H;Eiqxluexact(zr' ts) - unum(zrf ts)l (19)

3
\/Zlfﬂuexact (Zrts)—Unum(Zr.ts)|?

,= 3 (20)
\/Zlfﬂuexact(zr’ts”z

Numerical experiment. 1: - “A Non-linear KGE”:

az—u—waz—u+ u—eu? =m(z1),(zt) €0,1] X [0,T] (21)
942 922 y' ] ] ] ] ] )

With initial conditions,

u(z,0)= 0 zel[o/1], %(z, 0) =0, z € [0,1]

and the boundary constraints

u(0,£) = 0 , u(l,t)=t> t€0,T]

withw = -1, u=0,e = 1&m(z,t) = 6zt(z* — t?) + z°t° (22)

Exact solution for the problem: u(x, t) = z3t3 (23)
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uAp proxi mated(z’t)

Absolute error in u(z,t) at j=3
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Figure 1: The solution for numerical Experiment no. 1 includes four graphical representations: exact
solution, approximate solution, contour view of the exact solution, and absolute error.

Using current scheme, proposed the numerical solution in the following form

u(z,8) = 52, 530, s (Poi(2) = 2 Pou(1)) Qup(8) — 2 £, (1) + 2 (§2(£) — £2(0)) +

(1= 2)(51(8) = £1(0)) = (1 = 2) 1P (0) + £, (2) (24)
Table 1: Table 3: At different of 'j ', value L, and L, errors for Test problem 1
Jj=1 J=2 J=3
Resolution
Level
Lo-error 2.69334632e-03 2.9622179667e-04 3.28768376e-05 2.5e-04 [25]
L,-€error 7.62593758e-04 8.5589706520e-05 9.52124782e-06 9.7e-05 [25]
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Table 2: Comparison of Exact solution for Test problem 1 with results achived

Apbroximate Value of Error value
z t pprox Exact solution Absolute [25].
Solution
error
0.05 0.05 0.000014553615258 | 0.000014444806667 1.07¢-09 -
0.1 0.1 0.003815423325686 | 0.003900097800132 7.16e-09 3.1e-04
0.2 0.2 0.017939826726911 | 0.018056008333945 1.34e-08 3.5e-04
0.3 0.3 0.049416386100151 | 0.049545686868345 1.67¢-08 1.8e-04
0.4 0.4 0.034562837292023 | 0.034563423922912 1.62¢-08 3.7e-04
0.5 0.5 0.105175840987305 | 0.105302640603567 1.60e-08 2.5¢-04
0.6 0.6 0.192148930569310 | 0.192260376739845 1.24e-08 3.7e-04
0.7 0.7 0.317266350484410 | 0.317352402477415 7.40e-08 3.6e-04
0.8 0.8 0.487458705981956 | 0.487512225016511 2.80e-08 2.2e-04
0.9 0.9 0.709656476255199 | 0.709673351557369 2.84e-09 4.5e-04
Numerical Experiment no. 2:
9%u %u 2
Sz Wy tuu—eut = m(z,t), (z,%#)€[0,1]x[0,T]
(25)
with initial constraints:
u(z,0) =z, z€[0,1]
2(2,0) =0, z€ [0,1]
and the boundary constraints
u(0,%) =0, €[0,T]
u(1,%) = cost, t€][0,T]
with w = —1 and m(z,£) = —zcost + z%cos?t (26)
Exact solution for the problem 2: u(z,t) = z cost (27)

u exact(z’t)

l"Approximated(z’t)
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For j=2 and p=27
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Figure 2: The solution for numerical Experiment no. 2 includes four graphical representations: exact
solution, approximate solution, contour view of the exact solution, and absolute error.

Using current scheme, proposed the numerical solution in the following form:

u(z, ) = 57, 537, se (Poi(2) = 2 Pou(1)) Qo(8) — 2 £ 5 (1) + 2 (§2(£) — £,(0)) +

(1= 2)(&(#) = £1(0)) = (1 = 2) £1p,(0) + £, (2) (28)
Table 3: At different of 'j', value L, and L, errors for Test problem 2
Resolution L,-error L,-error L,-error L,-error L,-error
level (FDM) (HSWM2) (MFDCM) [25] (CM) [25] (HSWM3)
[16]
3 1.1474E-01 | 2.2466E-08 5.7e-11 3.3e-04 0
4 1.2236E-01 | 5.9080E-10 5.8e-12 8.3e-05 0
5 1.2433E-01 | 6.4369E-11 - - 0
Table 4: Comparison of Exact solution for Test problem 2 with results achived
Approximate . Value of Value of Error
z t . Exact solution Absolute [20]
Solution
€1rror
0.10 0.10 0.0061388829 0.0061388829 0 4.9593F — 8
0.20 0.20 0.0060452101 0.0060452101 0 5.6542E — 7
0.30 0.30 0.0058926166 0.0058926166 0 1.8493E — 6
0.40 0.40 0.0056825896 0.0056825896 0 3.2841E-6
0.50 0.50 0.0054171763 0.0054171763 0 3.8373E -6
0.60 0.60 0.0050556234 0.0050556234 0 4.6197E — 6
0.70 0.70 0.0046817428 0.0046817428 0 1.4141E —5
0.80 0.80 0.0042622308 0.0042622308 0 5.6879E — 5
0.90 0.90 0.0038011762 0.0038011762 0 1.8571E — 4
Conclusion:

A hybrid technique called the HS-3WM method, combined with the Quasilinearisation
technique, has been developed in the present study for solving non-linear KGE. The results
obtained from this proposed method are found to be comparable with other existing methods,
and it shows less absolute error while solving various numerical examples. The proposed
technique can be applied to handle complex problems, including those whose solutions are
difficult to obtain, for better results.
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