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Abstract 

 

The study of graphs through their associated matrices have always been immensely 

advantageous. The most natural generalization of various types of energy, namely the distance 

energy, Harary energy, etc. was introduced recently using the notion of distance-degree energy 

which in turn is derived from the distance-degree matrix that imbibes both the degree of the 

vertices in a graph and the distance between them. In this paper, we obtain several analytic 

expressions and bounds for the distance-degree energy and distance-degree spectral radius of 

graphs. 

 

Keywords: Distance-Degree Energy, Distance-Degree Spectral Radius, vertex-distance-

vertex-degree matrix, bounds 

Subject Classification: 05C50, 34L16 

 
1,2*Department of Mathematics, Stella Maris College (Autonomous), (Affiliated to the 

University of Madras), Chennai, India 

 

Email: 2*subbulakshmi216@gmail.com 

 

Corresponding Author:  
P. Subbulakshmi2* 
2*Department of Mathematics, Stella Maris College (Autonomous), (Affiliated to the 

University of Madras), Chennai, India 

 

DOI: 10.31838/ecb/2023.12.3.186 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Section A-Research paper Bounds on the Distance-Degree Energy and Distance- 

Degree Spectral Radius of Graphs 

 

Eur. Chem. Bull. 2023, 12 (3), 2477 – 2483                                                                                      2478  

1. Introduction 

 

In the booming era of graph theory, various concepts have gained importance due to their 

practical significance which has also led to the growth of mathematics in manifold ways. The 

study of different aspects of abstract objects and generalizing various notions have always 

interested mathematicians through the decades. One such generalization of the graph invariant, 

namely distance-degree energy was introduced by Sarah Surya et. al [8]., with the motivation 

to understand the behaviour of matrices associated to the graphs which in turn induces both the 

degree of the vertices and the distance between them. 

 

The various types of topological indices are molecular descriptors which characterize different 

classes of graphs [3, 9, 11, 13]. Also, the parameters derived from various matrices associated 

to graphs have also found successful implications in several fields [10]. In this direction, it is 

necessary to investigate the newly introduced parameter, namely the distance-degree energy 

for several family of graphs. 

 

To this end, the search for analytic expressions that interconnects the parameters derived from 

the distance-degree matrix was established. We denote the distance-degree matrix of a graph 

G by DD(G), the distance-degree energy of G by DDE(G) and assume that all the graphs 

considered in this article are finite, undirected, simple and connected. 

 

The motivation for this article comes from our interest to obtain several lower and upper bounds 

for the newly defined variant of energy, namely, the distance-degree energy of a graph. The 

combinations of the notions of degree and distance in a graph to obtain a graph invariant of 

energy has been initiated recently by the definition of distance-degree energy to look up to 

what the society can advantageously benefit. The natural question one can ask is that if this 

new variant of energy inherit any of the properties of its forefathers, namely the energy or 

distance energy? At the same time, it is also worthy to note that various results on energy and 

distance energy of graphs can be found in [2, 6, 12]. In this connection, we have studied the 

distance-degree matrix and acquired some bounds for the parameters arising from it, that is, 

the distance-degree energy and distance-degree spectral radius. 

Further, we have also derived different bounds for the distance-degree spectral radius and 

produced some interesting results for the behaviour of these parameters in regular graphs of 

diameter 2 due to its practical significance. 

 

2. Preliminaries 

The vertex-distance-vertex-degree matrix, which we call as the distance-degree matrix of G, 

was introduced by O. Ivanciuc in his subsequent papers in 1999 and 2000 [4, 5] and formally 

defined as follows: 

 

Definition 1. [4, 5] For a simple graph G with V number of vertices, the vertex-distance-vertex-

degree matrix DD(G), is defined as a V × V matrix with the condition that 

𝐷𝐷(𝐺)𝑖𝑗 = {
𝑙𝑝(𝑖𝑗)𝑑𝑞(𝑖)𝑑𝑟(𝑗), if 𝑖 ≠ 𝑗
0,                      otherwise

 

where l(ij) is the length of the shortest path between the vertices i and j and d(i), d(j) denote the 

degrees of the vertices i and j respectively. The parameters p, q and r are natural numbers. 

 

Definition 2. [8] Distance-Degree Energy of a graph, denoted by DDE(G), is defined as the 

absolute sum of the eigenvalues of its vertex-distance-vertex-degree matrix. 
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Definition 3. The largest eigenvalue obtained from the distance-degree matrix of a graph G is 

called as its distance-degree spectral radius, denoted by λ1(G). 

 

Definition 4. [7] If A is a real n × n symmetric matrix, then the Rayleigh quotient is defined as 

𝑟(𝑥) =
𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
, for any n-dimensional real vector x ≠ 0. 

 

3. Bounds on Distance-Degree Energy 

This section contains some bounds on the distance-degree energy of graphs and the determinant 

of their distance-degree matrices. 

 

Theorem 1. |det (𝐷𝐷(𝐺))| ≤ |𝜆1|𝑛. 

Proof. The result can be derived from the fact that |det (𝐷𝐷(𝐺))| ≤ |𝜆1||𝜆2| ⋯ |𝜆𝑛|     □ 

 

Theorem 2. For any connected graph G, DDE(G) ≥ n. 

Proof. Using the relation that the arithmetic mean of a set of numbers is always greater than or 

equal to its harmonic mean, we see that,  
𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛

𝑛
≥

𝑛

1
𝜆1

+
1
𝜆2

+ ⋯ +
1

𝜆𝑛

 

𝐷𝐷𝐸(𝐺)

𝑛
≥

𝑛 × 𝜆1𝜆2 ⋯ 𝜆𝑛

𝜆2𝜆3 ⋯ 𝜆𝑛 + 𝜆1𝜆3 ⋯ 𝜆𝑛 + ⋯ + 𝜆1𝜆2 ⋯ 𝜆𝑛−1
 

𝐷𝐷𝐸(𝐺)

𝑛
≥

𝑛𝑑𝑒𝑡(𝐷𝐷(𝐺))

𝑛(𝜆1𝜆2 ⋯ 𝜆𝑛)
 

and hence the result follows.              □ 

Theorem 3. 𝐷𝐷𝐸(𝐺) ≥ 𝑛[det(𝐷𝐷(𝐺))]
2

𝑛⁄
, for any connected graph G. 

Proof. We know that the arithmetic mean A, geometric mean G and the harmonic mean H of 

any set of numbers are connected by the relation G2 = AH 

Thus, (𝜆1𝜆2 ⋯ 𝜆𝑛)
2

𝑛⁄ =
𝜆1+𝜆2+⋯+𝜆𝑛

𝑛
×

𝑛
1

𝜆1
+

1

𝜆2
+⋯+

1

𝜆𝑛

 

(𝜆1𝜆2 ⋯ 𝜆𝑛)
2

𝑛⁄ = 𝐷𝐷𝐸(𝐺) ×
𝜆1𝜆2 ⋯ 𝜆𝑛

𝑛(𝜆1𝜆2 ⋯ 𝜆𝑛)
 

𝐷𝐷𝐸(𝐺) ≥ 𝑛(𝜆1𝜆2 ⋯ 𝜆𝑛)
2

𝑛⁄  

𝐷𝐷𝐸(𝐺) ≥ 𝑛[det(𝐷𝐷(𝐺))]
2

𝑛⁄
        □ 

 

4. Bounds on Distance-Degree Spectral Radius 

In this section, we obtain several lower bounds and upper bounds for the distance-degree 

spectral radius of graphs in terms of their distance-degree energy, number of vertices and 

determinant of their distance-degree matrices. 

 

Theorem 4. For any graph G, |𝜆1| ≥ |det (𝐷𝐷(𝐺))|
1

𝑛⁄ . 

Proof. By means of using the relation that the arithmetic mean of a set of numbers is greater 

than or equal to its geometric mean, we see that, 
|𝜆1| + |𝜆2| + ⋯ + |𝜆𝑛|

𝑛
≥ |𝜆1𝜆2 ⋯ 𝜆𝑛|

1
𝑛⁄  

𝑛|𝜆1|

𝑛
≥ |det (𝐷𝐷(𝐺))|

1
𝑛⁄  

from which the result follows.               □ 
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Theorem 5. For any connected graph G, 𝜆1(𝐺) ≥
1

𝑛
. 

Proof. The following can be obtained by employing the fact that the geometric mean of a set 

of numbers is greater than or equal to its harmonic mean. 

(𝜆1𝜆2 ⋯ 𝜆𝑛)
1

𝑛⁄ ≥
𝑛

1
𝜆1

+
1
𝜆2

+ ⋯ +
1

𝜆𝑛

 

(𝑛𝜆1)
1

𝑛⁄ ≥  
𝑛

𝜆2𝜆3 ⋯ 𝜆𝑛 + 𝜆1𝜆3 ⋯ 𝜆𝑛 + ⋯ + 𝜆1𝜆2 ⋯ 𝜆𝑛−1

𝜆1𝜆2 ⋯ 𝜆𝑛

 

(𝑛𝜆1)
1

𝑛⁄ ≥  
𝑛 det(𝐷𝐷(𝐺))

𝑛[𝜆1𝜆2 ⋯ 𝜆𝑛]
 

(𝑛𝜆1)
1

𝑛⁄ ≥ 1 

𝜆1

1
𝑛⁄

≥
1

𝑛
1

𝑛⁄
 

and hence the result follows.              □ 

Theorem 6. For any connected graph G, 𝜆1 ≥
(1−

1

𝑛
)

1−
1
𝑛

[det(𝐷𝐷(𝐺))]
1

𝑛⁄
. 

Proof. Using the relation between geometric mean and harmonic mean for the n – 1 eigenvalues 

𝜆2, 𝜆3, …, 𝜆𝑛, we obtain 

(𝜆2𝜆3 ⋯ 𝜆𝑛)
1

𝑛−1⁄ ≥
𝑛 − 1

1
𝜆2

+
1
𝜆3

+ ⋯ +
1

𝜆𝑛

 

[
det(𝐷𝐷(𝐺))

𝜆1
]

1
𝑛−1 ≥

𝑛 − 1

𝜆3𝜆4 ⋯ 𝜆𝑛 + 𝜆2𝜆4 ⋯ 𝜆𝑛 + ⋯ + 𝜆2𝜆3 ⋯ 𝜆𝑛−1

𝜆2𝜆3 ⋯ 𝜆𝑛

 

≥  
(𝑛 − 1)det (𝐷𝐷(𝐺))

𝑛𝜆1det (𝐷𝐷(𝐺))
 

[det(𝐷𝐷(𝐺))]
1

𝑛−1 ≥
(𝑛 − 1)𝜆1

1
𝑛−1

𝑛𝜆1
 

≥
(1 −

1
𝑛)

𝜆1

𝑛
𝑛−1

 

Raising to the power of (n – 1) on either sides, 

𝜆1 ≥
(1−

1

𝑛
)

1−
1
𝑛

[det(𝐷𝐷(𝐺))]
1
𝑛

         □ 

 

Theorem 7. For any connected graph G, 
𝑛𝑛−1[det(𝐷𝐷(𝐺))]

[𝐷𝐷𝐸(𝐺)]𝑛−1
≤ 𝜆1 ≤ 𝐷𝐷𝐸(𝐺) −

(𝑛−1)2

𝑛
 

Proof. With the use of the relation that the arithmetic mean is always greater than or equal to 

the geometric mean for any set of numbers, we now consider the means for the n – 1 

eigenvalues 𝜆2, 𝜆3, …, 𝜆𝑛, 
𝜆2 + 𝜆3 + ⋯ + 𝜆𝑛

𝑛 − 1
≥

𝑛 − 1

1
𝜆2

+
1
𝜆3

+ ⋯ +
1

𝜆𝑛

 

𝐷𝐷𝐸(𝐺) − 𝜆1 ≥
(𝑛 − 1)2(𝜆2𝜆3 ⋯ 𝜆𝑛)

𝜆3𝜆4 ⋯ 𝜆𝑛 + 𝜆2𝜆4 ⋯ 𝜆𝑛 + ⋯ + 𝜆2𝜆3 ⋯ 𝜆𝑛−1
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≥ (𝑛 − 1)2

det(𝐷𝐷(𝐺))
𝜆1

𝑛[det(𝐷𝐷(𝐺))]
 

𝜆1 ≤ 𝐷𝐷𝐸(𝐺) −
(𝑛 − 1)2

𝑛
 

Using the relation between arithmetic mean and geometric mean for the set of n – 1 eigenvalues 

𝜆2, 𝜆3, …, 𝜆𝑛, we get 
𝜆2 + 𝜆3 + ⋯ + 𝜆𝑛

𝑛
≥ (𝜆2𝜆3 ⋯ 𝜆𝑛)

1
𝑛−1 

|𝜆2| + |𝜆3| + ⋯ + |𝜆𝑛|

𝑛
≥ (𝜆2𝜆3 ⋯ 𝜆𝑛)

1
𝑛−1 

𝐷𝐷𝐸(𝐺)

𝑛
≥ [

det (𝐷𝐷(𝐺))

|𝜆1|
]

1
𝑛−1

 

|𝜆1|
1

𝑛−1 ≥
𝑛[det(𝐷𝐷(𝐺))]

1
𝑛−1

𝐷𝐷𝐸(𝐺)
 

Raising to the power of (n – 1) on either sides, the lower bound can be obtained.      □ 

 

5. Bounds on Regular Graphs of Diameter 2 

Moore and Moser [1] showed that almost all graphs are of diameter 2. In today's scenario, there 

is a lot of awareness and urge about more space for equitable sharing of all available resources 

and providing equal accessibility of all capitals for every individual on earth. As most of the 

real-life problems can be beneficially modeled as a graph or network to obtain optimal 

solutions, the study of regular graphs which have the same degrees for all its vertices becomes 

essential and an inevitable area of study. Hence, the results procured for the regular graphs of 

diameter 2 in this section are definitely going to find its use in the very near future for a special 

purpose. Throughout this section, we assume p = q = r = 1. 

 

Theorem 8. Let G be a r-regular graph of diameter 2 on n vertices and m edges. If the 

eigenvalues of its distance-degree matrix are 𝜆1, 𝜆2, …, 𝜆𝑛, then ∑ 𝜆𝑖
2 = 2𝑟4(2𝑛2 − 2𝑛 −𝑛

𝑖=1

3𝑚). 

Proof. Since G is r-regular, 𝑑(𝑖) = 𝑟, ∀𝑖 ∈ 𝑉(𝐺). Further, since the diameter of G is 2, 

𝐷𝐷(𝐺)𝑖𝑗 = {
𝑟2          if 𝑖 is adjacent to 𝑗

2𝑟2 if 𝑖 is not adjacent to 𝑗
 

Therefore, ∑ 𝜆𝑖
2𝑛

𝑖=1 = ∑ ∑ 𝐷𝐷(𝐺)𝑖𝑗𝐷𝐷(𝐺)𝑗𝑖 =𝑛
𝑗=1

𝑛
𝑖=1 ∑ ∑ [𝐷𝐷(𝐺)𝑖𝑗]

2𝑛
𝑗=1

𝑛
𝑖=1  

= 2𝑚 × (𝑟2)2 + [𝑛(𝑛 − 1) − 2𝑚] × (2𝑟2)2 
from which the theorem follows.            □ 

 

Theorem 9. If G is a graph of diameter 2 on n vertices, then 𝜆1 = 𝑟2(2𝑛 − 𝑟 − 2) if and only 

if G is regular. 

Proof. Every ith row of the DD-matrix of G would contain d(i) elements equal to (r2) and n - 

d(i) elements equal to (2r2). Then eigenvector [1 1 1 ⋯ 1] corresponds to the largest eigenvalue 

as the row sums of the DD-matrix are equal. Using the principle of Rayleigh, we can see that, 

𝜆1 =
1

𝑛
[𝑟 × 𝑟2 + (𝑛 − 𝑟 − 1)2𝑟2] = 𝑟2(2𝑛 − 𝑟 − 2). Conversely, the row sum of the DD-

matrix of G can be equal only when the graph is regular. Hence, the proof.      □ 

 

Corollary 1. If G is a r-regular graph of diameter 2 on n vertices, then |det (𝐷𝐷(𝐺))| ≤
𝑟2𝑛(2𝑛 − 𝑟 − 2)𝑛. 
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Theorem 10. If G is a r-regular graph of diameter 2 on n vertices and m edges, then 𝐷𝐷𝐸(𝐺) ≤

𝑟2 [(2𝑛 − 𝑟 − 2) + √4𝑛(𝑛 − 2) − 𝑛𝑟(𝑛 − 𝑟 + 5) + (𝑟 + 2)2]. 

Proof. From theorem 9, it follows that 𝜆1 = 𝑟2(2𝑛 − 𝑟 − 2). Using Cauchy-Schwarz 

inequality, it follows that (∑ |𝜆𝑖|)
𝑛
𝑖=1

2
≤ (𝑛 − 1) ∑ 𝜆𝑖

2𝑛
𝑖=1  

⇒ 𝐷𝐷𝐸(𝐺) ≤ 𝜆1 + √(𝑛 − 1)[4𝑛2𝑟4 − 4𝑛𝑟4 − 6𝑚𝑟4 − 𝜆1
2] 

From theorem 9, 𝜆1 = 𝑟2(2𝑛 − 𝑟 − 2) and since 2𝑚 = 𝑛𝑟, we get, 

𝐷𝐷𝐸(𝐺) ≤ 𝑟2 [(2𝑛 − 𝑟 − 2) + √4𝑛(𝑛 − 2) − 𝑛𝑟(𝑛 − 𝑟 + 5) + (𝑟 + 2)2].           □ 

 

Theorem 11. For any r-regular graph of diameter 2 on n vertices, the distance-degree energy 

can be expressed as a function of its distance-degree spectral radius which takes values in the 

interval (−𝑟2√(𝑛 − 1)(4𝑛 − 3𝑟 − 4), 𝑟2√(𝑛 − 1)(4𝑛 − 3𝑟 − 4)). 

Proof. Since the largest eigenvalue of a r-regular graph of diameter 2 on n vertices is 𝑟2(2𝑛 −
𝑟 − 2), using Cauchy-Schwarz inequality, it follows that, 

𝐷𝐷𝐸(𝐺) ≤ 𝜆1 + √(𝑛 − 1)[4𝑛2𝑟4 − 4𝑛𝑟4 − 6𝑚𝑟4 − 𝜆1
2] 

Define a function 𝑓(𝑥) ≔ 𝑥 + √(𝑛 − 1)[4𝑛2𝑟4 − 4𝑛𝑟4 − 6𝑚𝑟4 − 𝑥2]. 
Hence, DDE(G) can be expressed in terms of its distance-degree spectral radius which takes 

values in the interval (−𝑟2√(𝑛 − 1)(4𝑛 − 3𝑟 − 4), 𝑟2√(𝑛 − 1)(4𝑛 − 3𝑟 − 4)).      □ 

 

Theorem 12. The spectral radius of a r-regular connected graph G of diameter 2 is bounded 

above by 
𝑟4[2𝑛−𝑟−2]2

det (𝐷𝐷(𝐺))
1

𝑛⁄
 if DD(G) is non-singular. 

Proof. From theorem 4, it is evident that, 

|𝜆1| ∑|𝜆𝑖|

𝑛

𝑖=1

≥ [det(𝐷𝐷(𝐺))]
1

𝑛⁄ ∑ |𝜆𝑖|

𝑛

𝑖=1

 

|𝜆1|2 ≥ [det(𝐷𝐷(𝐺))]
1

𝑛⁄
𝐷𝐷𝐸(𝐺) 

Using theorem 9,  

𝐷𝐷𝐸(𝐺) ≤
[𝑟2(2(𝑛 − 1) − 𝑟)]2

det (𝐷𝐷(𝐺))
1

𝑛⁄
 

𝐷𝐷𝐸(𝐺) ≤
𝑟4[2𝑛−𝑟−2]2

det(𝐷𝐷(𝐺))
1

𝑛⁄
          □ 

 

6. Concluding Remarks and Future 

Scope 

This paper provides an insight about how 

the newly defined parameters, namely, 

distance-degree energy and the distance-

degree spectral radius assumes values for 

various classes of graphs. The study has 

also been extended in the direction to obtain 

bounds for any graph, in general and 

regular graphs of diameter 2, in particular. 

Investigating whether these bounds are 

sharp is still open. 
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