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Abstract 

 

Aim: The goal of Vehicular Intrusion is to detect the attackers among Connected vehicles having unique 

characterstics and high mobility. The Controller Area Network (CAN Bus) is a bus communication protocol that 

establishes a standard for the simultaneous transmission of data between in-vehicle components. The Machine 

Learning algorithms are Wide-Resnet Convolutional Neural Network (CNN) and Support Vector Machine (SVM) 

are the two algorithms (SVM).  

Materials and Methods: The data was obtained from the website www.kaggle.com.  Sample size of Convolutional 

Neural Neural Network is (N=20) and  the Sample size of Support Vector Machine is (N=20) are the two classes. 

The increased CAN(Bus) accuracy is 85%, and the Wide-Resnet Convolutional Neural Networks accuracy is 88%. 

The two algorithms are used to determine the CAN Bus Intrusion's enhanced categorization or complexity. In 

addition, the independent sibling had a satisfied value (p<0.05) i.e α=0.01with the confidence level of 95%. 

Conclusion: Recognizing In-Vehicle Network Intrusion significantly seems to be better in Wide-Resnet 

Convolutional Neural Network (CNN) than Support Vector Machine. 

 

Keywords: Vehicle Intrusion, Convolution Neural Network, Error Rate, Machine Learning, Support Vector 

Machine,wide-Resnet, CAN bus. 
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1. Introduction 

 

Nowadays Securing the connectivity component of 

this technology is the most important of all the issues 

and obstacles facing connected vehicle intrusion in 

terms of implementation and development 

today.Connected vehicles, like any other electronic 

equipment connected to the Internet, are vulnerable 

to malicious cyberattacks(Hutter, Kotthoff, and 

Vanschoren 2019; Siuly, Li, and Zhang 2017)). Not 

to mention that the automation aspect of these 

technologies is a major contributor to the rise in 

cyber security attacks. Engine and brake failure, 

engine overheat, control steering troubles, and door 

lock issues are all examples of attacks that can be 

very serious and life threatening. As a result, the goal 

of this paper is to offer a vehicle Intrusion Detection 

System that uses Wide-Resnet and a SVM to prevent 

future security assaults on Connected 

Vehicles((Hutter, Kotthoff, and Vanschoren 2019; 

Siuly, Li, and Zhang 2017). 

 

There are 78 articles found on IEEE, and 64 articles 

were found in the Google Scholar. Information 

sharing between connected vehicles raises concerns 

about confidentiality, message integrity, and denial of 

service, all of which pose security and privacy 

concerns. This article offers an automated secure 

continuous on connected vehicles that provides 

services that meet users' quality of service (QoS) and 

Quality of Experience (QoE) standards while also 

enabling an intrusion detection method against 

attacks (Renault, Mühlethaler, and Boumerdassi 

2019). The dataset contains more than 2000 different 

kinds of messages sent totally at random on the CAN 

bus and all included in the analysis. Despite the 

complex structure of the dataset, the proposed 

method showed high detection accuracy with a low 

false negative rate. ((Renault, Mühlethaler, and 

Boumerdassi 2019) An anomaly-based IDS 

implemented using unsupervised learning to identify 

intrusions in-vehicle communication networks, in 

particular, a CAN bus Intrusion (Mhamed et al. 

2021).Our team has extensive knowledge and 

research experience  that has translated into high 

quality publications (K. Mohan et al. 2022; Vivek et 

al. 2022; Sathish et al. 2022; Kotteeswaran et al. 

2022; Yaashikaa, Keerthana Devi, and Senthil Kumar 

2022; Yaashikaa, Senthil Kumar, and Karishma 

2022; Saravanan et al. 2022; Jayabal et al. 2022; 

Krishnan et al. 2022; Jayakodi et al. 2022; H. Mohan 

et al. 2022)  

 

(Barolli, n.d.)proposed a Clock-based IDS based 

Intrusion Detection system to protect in-vehicle 

Electronic Control Units (ECUs) and identify attacks 

on in-vehicle intrusion networks. (Marrinan 2021) 

stated to detect attacks in a CAN bus.They proposed 

that by using CAN packet frequency between packet 

sequences can discover anomalies based on the CAN 

performance on which ECUs interact. (Rahmatian 

2014) The difficulties in predicting and generating 

attack behavior in evaluating the CAN bus system, as 

well as the need of generalization that is appropriate 

with the proprietary environment of CAN protocol, 

thus encourage researchers to propose supervised or 

semi-supervised anomaly detection methods. 

 

Despite numerous security solutions being presented, 

the CAN bus communication system remains 

vulnerable to a variety of attacks attempting to 

compromise the network's security, in Vehicular 

intrusion. The landscape is continually evolving and 

every new connectivity service adds to the number of 

attack vectors available (Kwon, Yoon, and Park 

2020). To overcome the issues of continuous attacks, 

it is proposed to design an Intrusion detection system 

using a Novel Wide Resnet Deep Learning Model 

and its performance is compared over a Support 

Vector Machine learning model.  

 

2. Methods and Materials 

 

The study setting of the proposed work was done in 

Saveetha School of Engineering, Object Oriented 

Analysis And Design lab. The sample size was 

calculated by using clincalc.com by keeping G power 

and minimum power of the analysis is fixed as 0.8 

and maximum accepted error is fixed as 0.5 with 

threshold value as 0.05% and Confidence Interval is 

95%. Mean and standard deviation has been 

calculated based on the previous literature for size 

calculation. The two groups are used  namely Wide-

Resnet Convolutional Neural Network(N=10) as an 

existing model as group 1 and Support Vector 

Machine(N=10) as a Proposed model as group 2. 

 

Wide-Resnet Convolutional Neural Networks 

(Cnn) 

By utilizing Wide-Resnet Convolutional Neural 

Networks calculations with 2 convolutional layers 

and completely associated layers. Wide-Resnet 

Convolutional Neural Networks comprises first and 

second convolution layers.This only a few blocks can 

run valuable representations or many blocks could 

share very little information with small contributions 

to the final goal. This problem was tried to be 
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addressed using a special case of dropout applied to 

residual blocks in which an identity scalar weight is 

added to each residual block on which dropout is 

applied 

The residual block of wide- ResNet is defined as 

follows in equation (1) 

 

                                             Xl +1 = xl + F(xl, Wl) ….       

(1) 

xl+1 and lxl represent the input and output of the l-th 

unit in the network 

F is a residual function 

Wl are the parameters 

 

Pseudo Code 

Step 1. Import the dataset. 

Step 2. preprocess the imported data. 

Step 3. Select the classification and tokenize the data. 

Step 4. Computing term frequency and creating 

document term matrix. 

Step 5. Evaluating the data by using an evaluation 

algorithm. 

 

Support Vector Machine (Svm) 

SVM is a supervised machine learning algorithm, and 

it can be used for either classification or regression 

challenges. However, it is mostly used in 

classification problems. SVM is based on the concept 

of decision planes that defines decision boundaries.It 

is a type of graphical approach. 

 The steps are  shown below. 

 

Pseudo Code 

Step 1. Import the dataset. 

Step 2. Preprocess the imported data. 

Step 3. Select the classification and tokenize the data. 

Step 4. Computing term frequency and creating 

document term matrix. 

Step 5. Evaluating the data by using an evaluation 

algorithm. 

For comparing both the models, the dataset has been 

trained with five different sample sizes. the accuracy 

values are recorded. The system configuration is used 

for the algorithm to run in a 64 - bit Operating 

System, 4GB RAM PC, and using Windows 10, 

Google Colab, and Microsoft Office for software 

specification.  

 

Statistical Analysis 

IBM SPSS version 22 software is used for statistical 

analysis of WIDE-RESNET and Support Vector 

Machine algorithm based methods.The independent 

variables are datasets of Vehicular intrusion and the 

dependent variables are predicting accuracy 

efficiency on intrusion. The independent T test 

analyses were carried out to calculate the accuracy of 

the WIDE- RESNET and SVM for both methods. 

 

Accuracy for wide-Residual Neural Network and 

Support Vector Machine algorithms have been 

calculated primarily based on equation(2) 

 

                                     Accuracy = 
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
   

(2) 

 

Where, 

TP = True Positive  

TN - True Negative  

FP - False Positive 

 FN - False Negative 

 

3. Results 

 

From Table2, shows the results of proposed 

algorithm Novel Wide-Resnet Convolution Neural 

Network and the existing system Support Vector 

Machine Algorithm where the accuracy of Wide-

Resnet CNN, taken N=10 iterations and mean value 

is 88.0460 and standard deviation and standard error 

mean is 0.34727, 0.77652. Group of SVM is N=10 

iterations and Mean is 85.7800, standard deviation 

and standard error rate mean is 0.55202,1.23436. It 

was observed that the mean accuracy of the Wide-

Resnet CNN algorithm was 88% and the Support 

Vector algorithm was 85%. Table 3, shows the 

accuracy level of Equal variances assumed in 

Levene’s Test for equality of variances of F is 0.975 

and Sig is 0.352and T-Test for equality of means t is 

5.008 and df  is 8.13and Sig.(2-tailed ) is .001 and 

Mean Difference is 3.26600 and Standard error 

difference is 0.65217 and 95% Confidence Interval of 

the Difference of Lower is 1.76209 and Upper is 

4.76991. An one more accuracy equal variances not 

assumed and T-Test for equality of means t is 5.008 

and df is 6.737 and Sig.(2-tailed) is 0.02 and Mean 

Difference and standard error rate difference is 

3.26600,0.65217 and 95% confidence interval of the 

difference of Lower and Upper 1.71159,4.82041. 

Table 3 represents the Independent Sample T-Test 

that is applied for the sample collections by fixing the 

level of significance as 0.005 with a confidence 

interval of 95 %. After applying the SPSS 

calculation, SVM has accepted a statistically 

significant value(P<0.05). From Figure 1 it was 

represented by a simple bar Mean of Accuracy Wide-

Resnet Convolutional Neural Network error range 

(0.99 - 0.98) and SVM error rate range (0.99 - 0.98) 
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4. Discussions 

 

Wide-Resnet CNN and Support Vector Machine 

algorithms are applied and compared on vehicle 

intrusion, which raises many interests largely due to 

its simplicity and the ability in detecting the attacks 

efficiently and to enhance the accuracy. From 

obtained consequences it's concluded that the Wide-

Resnet CNN algorithm gives higher accuracy of 

significance 0.0001 consequences as compared to the 

Support Vector Machine. Machine learning 

algorithms(Palani, Elango, and Viswanathan K 2021) 

have been used to analyze the information which 

vehicle is attacked or not by using these algorithms 

which produce the accuracy by comparing it. In this 

way the algorithm wide-resnet CNN produces 

accuracy (88.00%) (Palani, Elango, and Viswanathan 

K 2021). (Granik and Mesyura 2017) compared SVM 

(85%). The Neural Networks with a precision of 90 

% is superior to the Support vector Machine with an 

exactness of 85% in perceiving the intrusion (Alazab 

and Tang 2019). (Li et al. 2022) reported the average 

detection rate of the KNN algorithm was 84.31 

percent and that of the AdaBoost algorithm was 

85.06 percent. (Hu et al. 2022)  showed in their work 

that the Mosaic coding approach has greater 

classification ability of 92% while confronting 

various sorts of attacks with significantly lower 

variance in all evaluation indices. 

 

5. Conclusion 

 

The accuracy rate of the WIDE-Resnet Convolution 

Neural Network algorithm has been improved (88%) 

& Support Vector Machine, which is having (85%). 

By applying vehicle intrusion comparing both 

algorithms, the Novel Wide-Resnet Convolution 

Neural Network algorithm has high accuracy. 
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Tables and Figures 

 

Table 1. Data collection for each algorithm N=10 iteration has been taken to calculate Accuracy rate for wide- 

Residual Neural Networks and Support Vector Machine to gain accuracy(%). 

Samples(N) 

Wide-ResnetConvolution Neural 

Networks(CNN) 
Support Vector Machine(SVM) 

Accuracy(%) Accuracy(%) 

1 88.00 85.00 

2 87.56 84.65 

3 86.56 84.78 

4 85.00 84.76 

5 85.23 84.00 

6 96.56 83.87 

7 86.56 84.12 

8 86.54 83.79 

9 87.56 82.89 

10 85.26 84.58 

 

Table 2. Comparison of the accuracy of Intrusion Recognition of Wide-Resnet Convolution Neural Networks and 

SVM .Wide-Resnet Convolution Neural Network algorithm had the highest accuracy (88%). Support Vector 

Machine had the lowest accuracy (85%) accuracy compared to wide -resnet. 

GROUPS N Mean Std Deviation 
Std Error 

Mean 

ACCURACY 

WRNs CNN 

 

SVM 

10 

 

10 

88.0460 

 

85.7800 

.77652 

 

1.23436 

.34727 

 

.55202 

 

Table 3: Independent Sample T-Test is applied for the sample collections by fixing the level of significance as 0.05 

with confidence interval as 95 %. After applying the SPSS calculation, SVM has accepted a statistically significant 

value(p<0.05). 

ACCURACY 

Levene’s Test 

for Equality 

of Variance 

 

 

T-test for Equality of Means 

f Sig t 
df. 

 

 

Sig(2-

tailed 

Mean 

Difference 

Std.Error 

Difference 

95% Confidence 

of the Differences 
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Lower Upper 

 

Equal 

variances 

assumed 
 

0.975 

 

0.352 

 

5.008 

 

8.13 

 

.001 

 

3.266 

 

.6521 

 

1.762 

 

4.769 

Equal 

variances not 

assumed 

 

5.008 

 

6.737 

 

.002 

 

 

 

3.266 

 

0.652 

 

1.711 

 

4.820 

 

 
Fig 1. Simple Bar Mean of Accuracy WRNs CNN error range (0.99 - 0.98) and Loss error rate range (2-4) and SVM 

error rate range (0.98 - 0.99) and for loss error range (0.2-0.3) with Mean accuracy of detection ± 2 SD.X Axis: 

WRNs CNN vs SVM Y-Axis: Mean accuracy of detection ± 2 SD 

 

 

 

 

 

 

 

 


