The Effects of Copper Addition on The Structure and Antibacterial Properties of Biomedical Glasses

Leyla Mojtabavi, Amir Razavi


In this work, we studied the effects of copper incorporation in the composition of bioactive glass. Three different glass compositions were synthesized with 0, 3, and 6 mol% of copper addition. X-Ray Diffraction (XRD) patterns confirmed that an amorphous microstructure was obtained for all three glass compositions. Results from Differential Thermal Analysis (DTA) showed that the copper addition in the glass lowers the glass transition temperature, from 646°C to 590°C when added at 6 mol%. X-ray Photoelectron (XPS) survey and high-resolution scans were performed to study the structural effects of copper addition in the glass. Results indicated that the incorporation of copper changes the ratio of bridging to non-birding oxygens in the structure. Glasses were further analyzed for their structure with Nuclear Magnetic Resonance (NMR) spectroscopy, which indicated that copper acts as a network modifier in the glass composition and copper-containing glasses show a less connected microstructure. Antibacterial efficacy of the glasses was analyzed against E. coli and S. epidermis. Copper-containing glasses showed a significantly higher inhibition zone compared to control glass. The glass with 6 mol% copper, exhibited inhibition zones of 9 and 16mm against E. coli and S. epidermis bacteria, respectively.   

Full Text:




  • There are currently no refbacks.


*********************** European Chemical Bulletin *******************